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RELISON is a comprehensive framework for social network analysis and recommendation in Java. This framework
allows the analysis of multiple structural properties of a social network graph (from simple ones like the nodes degree
or the distance between nodes to more complex ones like betweenness or random walk probabilities), detect the com-
munities in a social network, predict and recommend which links are more likely to appear in the network in the future,
and analyze the flow of information that travels through the network.

RELISON has an special focus on the link recommendation (also known as contact recommendation) problem in social
networks, i.e. recommending those people in a social network with whom a given user might be interested to connect.
Among its main goals, RELISON aims to provide efficient tools for executing and evaluating such approaches, consid-
ering not only their accuracy, but also other aspects like their novelty, diversity, and the effects such recommendations
have on global properties of the networks (as changes in the structural properties or in the speed or diversity of the
information diffusion).

GET STARTED 1
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CHAPTER

ONE

INTRODUCTION

RELISON is a comprehensive framework for social network analysis and recommendation in Java. This framework
allows the analysis of multiple structural properties of a social network graph (from simple ones like the nodes degree
or the distance between nodes to more complex ones like betweenness or random walk probabilities), detect the com-
munities in a social network, predict and recommend which links are more likely to appear in the network in the future,
and analyze the flow of information that travels through the network.

RELISON has an special focus on the link recommendation (also known as contact recommendation) problem in social
networks, i.e. recommending those people in a social network with whom a given user might be interested to connect.
Among its main goals, RELISON aims to provide efficient tools for executing and evaluating such approaches, consid-
ering not only their accuracy, but also other aspects like their novelty, diversity, and the effects such recommendations
have on global properties of the networks (as changes in the structural properties or in the speed or diversity of the
information diffusion).

These framework is divided in 6 different components:

• RELISON-core: Basic graph definitions and generators.

• RELISON-sna: Social network analysis metrics and community detection.

• RELISON-content: Classes and definitions for user-generated contents in social networks.

• RELISON-linkpred: Link prediction and contact recommendation functionalities.

• RELISON-diffusion: Simulation of information diffusion dynamics.

• RELISON-examples: Examples showcasing the functionality of the library.
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CHAPTER

TWO

INSTALL RELISON

RELISON is a library working with the following operating systems:

• Linux

• Windows 10

It requires Java version 14 or later.

2.1 Install from source

There are many ways you can install and use RELISON on your system. We provide information here on how to do
this:

• Executable

• Docker

• Maven

• Java

2.1.1 Executable

If you want to use the default command line programs, we recommend to download the JAR file containing all the
dependencies. This file is available from the following link:

https://github.com/ir-uam/RELISON/releases/download/v1.0.0-maven/relison.jar

You can download it with the following command:

curl –L https://github.com/ir-uam/RELISON/releases/download/v1.0.0-maven/relison.jar --
→˓output relison.jar

Then, you can use any of the available programs by executing the following line on your terminal:

java [VM_OPTIONS] -jar relison.jar PROGRAM_CODE [arguments]

where

• [VM_OPTIONS] represent the list of configuration parameters for the Java virtual machine.

• PROGRAM_CODE is the name of the program to execute.

• [arguments] are the list of arguments of program.
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2.1.2 Docker

A Dockerized version of the command line RELISON program is available on Docker Hub. In order to run a container,
execute the following two docker commands:

docker pull javiersanzcruza/relison:latest
docker run -p 8888:8888 javiersanzcruza/relison:latest

This will create a Docker container with a Jupyter notebook acessible from http://localhost:8888. The executable .jar
for RELISON will be available on the /tmp/notebooks/RELISON/ directory.

2.1.3 Maven

The recommended way to use RELISON is through Maven. This will allow you to automatically download all the
necessary dependencies to work with this framework. There are two ways to do this:

Maven Central

A first option allows to download the project from Maven Central. In order to add the library to your project, just add
the following dependency to the .pom file.

<dependency>
<groupId>io.github.ir-uam</groupId>
<artifactId>RELISON-[module-name]</artifactId>
<version>1.0.0</version>

</dependency>

where [module-name] indicates the name of the module you want to import.

2.1.4 Java

In case you do not want to use Maven, you just need to compile the library into JAR files, or obtain them from Maven
Central: https://search.maven.org/search?q=RELISON%20io.github.ir-uam

In addition, you might need to obtain the following libraries (and their dependencies):

• FastUtil v.8.5.2. (https://fastutil.di.unimi.it/)

• Matrix Toolkits Java v.1.0.4. (https://github.com/fommil/matrix-toolkits-java)

• RankSys v.0.4.3. (http://ranksys.github.io/)

– RankSys-core

– RankSys-fast

– RankSys-formats

– RankSys-rec

– RankSys-nn

– RankSys-novdiv

– RankSys-novelty

– RankSys-mf
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• Jung v.2.1.1. (http://jung.sourceforge.net/)

• Apache Lucene v.8.4.1. (https://lucene.apache.org/)

– Lucene-core

• Terrier v.5.1. (http://terrier.org/)

– terrier-core

– terrier-realtime

– terrier-learning

• Weka v.3.6.6. (https://www.cs.waikato.ac.nz/ml/weka/)

• Cloning v.1.9.2. (https://mvnrepository.com/artifact/uk.com.robust-it/cloning/1.9.2)

• Yaml Beans v.1.06 (https://github.com/EsotericSoftware/yamlbeans)

• JUnit v. 4.13.1.

2.1. Install from source 7
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CHAPTER

THREE

LICENSE

Copyright (C) 2021 Information Retrieval Group at Universidad Autónoma de Madrid, http://ir.ii.uam.es.

This Source Code Form is subject to the terms of the Mozilla Public License, v. 2.0. If a copy of the MPL was not
distributed with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
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CHAPTER

FOUR

CONTACT

Questions? Please contact

• Javier Sanz-Cruzado (javier.sanz-cruzadopuig@glasgow.ac.uk)

• Pablo Castells (pablo.castells@uam.es)
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CHAPTER

FIVE

NETWORKS

The RELISON library allows the creation, reading, writing and manipulation of networks. Mathematically, a network
is modelled as a graph, 𝐺 = ⟨𝒰 , 𝐸⟩, where 𝒰 is the set of users in the network, and 𝐸 ∈ 𝒰2 is the set of links in the
network. For each user 𝑢 ∈ 𝒰 , we define his neighborhood, Γ(𝑢) as the set of people in the network sharing a link with
him.

In order to use the basic graph structures, the following package must be included in the pom.xml file in your Maven
project.

<dependency>
<groupId>es.uam.eps.ir</groupId>
<artifactId>RELISON-core</artifactId>
<version>1.0.0</version>

</dependency>
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CHAPTER

SIX

PROPERTIES OF A GRAPH

The RELISON library allows different types of network, depending on its properties. We have to select three options:

Number of edges between users

The first option to consider in a network is the number of edges we allow between the same pair of users. If we consider
many of them, we are talking about multigraphs, whereas, if we just consider one, we are using a simple graph.

Direction of the edges

The second consideration defines whether all the edges are reciprocal or not. If they are, there is no difference between
the (u,v) and (v,u), and we are talking about an undirected network. This is the case of the Facebook friendship
network, where a link has to be accepted by both users before it is created. In case the direction of the edges matters,
we are talking about a directed network, as the Twitter follows network.

Direction of the edges

The third and final consideration is referred to the properties of the edges. Sometimes, it is possible to define a function
𝑤, which assigns a weight to each of the edges in the network. This weight might define very different properties: the
frequency of interaction between the users, the cost of travelling from one node to another, etc. If the network considers
these weights, we consider it a weighted network, while an unweighed network just takes binary weights (weight equal
to 1 if the edge exists, 0 otherwise).

In the table below, we include the basic interfaces for defining any of those graphs, depending on the properties of the
network.

Table 1: Basic classes for the definition of network graphs
Multigraph Directed Weighted Class

UndirectedUnweightedGraph
X UndirectedWeightedGraph

X DirectedUnweightedGraph
X X DirectedWeightedGraph

X UndirectedUnweightedMultiGraph
X X UndirectedWeightedMultiGraph
X X DirectedUnweightedMultiGraph
X X X DirectedWeightedMultiGraph
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CHAPTER

SEVEN

CREATION OF EMPTY GRAPHS

When integrated in another Java library, the RELISON library provides two options for generating empty graphs.

The first option considers the straightforward use of the class constructors. RELISON provides an efficient implemen-
tation for each of the network types described above. The obtain this implementation, it is just necessary to add the
prefix Fast to the interface names described earlier. No additional argument needs to be provided to the constructors.
For instance, if we want to create a directed unweighted and simple graph, we would just create it as:

Graph<U> graph = new FastDirectedUnweightedGraph();

The second option uses graph generators: the EmptyGraphGenerator class builds empty simple graphs, whereas the
EmptyMultiGraphGenerator class does the same for multigraphs. The constructor has to be configured with two
parameters, indicating whether the graph is directed and/or weighted. Following the previous example, we would do
the following:

Graph<U> graph;
boolean directed = true;
boolean weighted = false;

GraphGenerator<U> ggen = new EmptyGraphGenerator();
ggen.configure(directed, weighted);
graph = ggen.generate();

17



RELISON, Release 1.0.0

18 Chapter 7. Creation of empty graphs



CHAPTER

EIGHT

READING / WRITING GRAPHS

Most times, the networks which shall be used in the library are stored in an external file. RELISON provides classes
for reading this type of networks. When we want to read the network, we use a GraphReader. This works as follows:

String file = "file.txt"; // the route of the file
boolean readWeights = true; // if we want to read the weights.
boolean readTypes = false; // if we want to read the types
GraphReader<U> greader; // we assume here that it has been configured
Graph<U> graph = greader.read(file, readWeights, readTypes);

To write a graph into a file, we use a GraphWriter. Once it is created, this works as follows:

String file = "file.txt"; // the route of the file
Graph<U> graph; // the graph to write
GraphWriter<U> gwriter; // the graph we want to write
boolean writeWeights = true; // if we want to write the edge weights.
boolean writeTypes = false; // if we want to write the edge types
gwriter.write(graph, file, writeWeights, writeTypes);

8.1 Basic format

The basic format prints, on each line, an edge of the network. The format of a line is the following (separated by a
delimiter):

node1 node2 (weight edgeType)

where node1 and node2 are the identifiers of the nodes, weight is the weight value (a double value) and type contains
an integer value classifying the edge. The last values are optional. The weight should only be provided when we want
to read the weights of the network, and the types must be provided when the user wants to read them.

For instance, let’s suppose that we have a Twitter network with 10,000 users and 100,000 edges. The first
two users have, as nicknames, “JavierSanzCruza” and “pcastells”, respectively, and the first follows the
second. Then, if we use “,” as delimiters the file would look as:

JavierSanzCruza,pcastells,1.0
<...>

If we want to read graphs from this format, we use the TextGraphReader and TextMultiGraphReader classes,
depending on whether we want to read a simple network or a multigraph. These classes receive the following arguments:

• directed: true if the network is directed, false otherwise.
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• weighted: true if the network is weighted, false otherwise.

• selfloops: true if we want to read edges from a node to itself, false otherwise.

• delimiter: the delimiter separating the different fields in the file. In the main programs of RELISON, it is a
tab.

• uParser: a parser for reading the type of the nodes from text.

When we want to write graphs into this format, we use the TextGraphWriter class, which just receives the delimiter
in the constructor.

We wanted to note here that this is the format available in the programs provided by the RELISON library, with the
fields separated by tabs (the t character).

8.2 Pajek format

This format allows reading and writing networks in the Pajek format (more information in the following link ). These
graphs have the following format (space separated):

*Vertices numVertices
vertexId1 "vertexLabel1"
vertexId2 "vertexLabel2"
<...>
vertexIdN "vertexLabelN"
*Edges numEdges
vertexId1.1. vertexId1.2. weight1
<...>

Here, for each node, we differentiate two value: the vertexId is a numerical value identifying the user, and the
vertexLabel is the actual identifier of the user. For instance, let’s suppose that we have a Twitter network with 10,000
users and 100,000 edges. The first two users have, as nicknames, “JavierSanzCruza” and “pcastells”, respectively, and
the first follows the second. Then, the Pajek file would be the following: .. code:

*Vertices 10000
1 "JavierSanzCruza"
2 "pcastells"
<...>
*Edges 100000
1 2 1.0
<...>

If we want to read graphs from this format, we use the PajekGraphReader class. This class receives the following
arguments:

• multigraph: true if the network is modelled after a multigraph, false otherwise.

• directed: true if the network is directed, false otherwise.

• weighted: true if the network is weighted, false otherwise.

• selfloops: true if we want to read edges from a node to itself, false otherwise.

• uParser: a parser for reading the type of the nodes from text.

When we want to write graphs into this format, we use the PajekGraphWriter class, which does not receive any
argument in its constructor.

Differently from the basic format, this one does not allow reading the types of the edges.
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CHAPTER

NINE

GRAPH MANIPULATION

The RELISON library provides methods for the manipulation of the network (adding nodes, edges, changing the
weights of edges, etc.). All this methods are provided in the Graph interface, but we summarize them here.

9.1 Nodes

The simplest way to modify a network is to add or remove one of its edges.

9.1.1 Add nodes

If we want to add a node to the network, we use the following method:

boolean addNode(U user)

Arguments:

• user: the identifier of the user.

Returns

• If the node is added, it returns true. Otherwise, it returns false. A user can only be added once, so, if a node
is added twice, the second time, this method will return false.

9.1.2 Remove nodes

If we want to remove a node from the network, we use:

boolean removeNode(U user)

Arguments:

• user: the identifier of the user.

Returns

• If the node is removed, it returns true. Otherwise, it returns false. If the user does not exist in the network,
this method will return false.
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9.2 Edges

The second group of elements that we can modify in a network is the group of edges in the network. In this case, we
have several methods of interest.

9.2.1 Add edges

To add edges, we can consider several options. We include here the most complete one, although more of them can be
seen on the reference of the Graph interface, here.

boolean addEdge(U orig, U dest, double weight, int type, boolean insertNodes)

Arguments:

• orig: the first node of the edge.

• dest: the second node of the edge.

• weight: the weight of the edge.

• type: the type of the edge.

• insertNodes: true if we want to add the nodes to the network if they do not exist, false otherwise.

Returns

• If the edge is added, it returns true. Otherwise, it returns false. In simple networks, an edge can only be
added once.

9.2.2 Update edge weights

If we want to modify the weight of an edge, we have to use the following methods. In simple networks, we have to use:

boolean updateEdgeWeight(U orig, U dest, double newWeight)

Arguments:

• orig: the first node of the edge.

• dest: the second node of the edge.

• newWeight: the new weight of the edge.

Returns

• If the edge weight is updated, it returns true. If the edge does not exist, it cannot be updated.

In multigraphs, we use the following method instead (the previous one just updates the first created edge between the
users):

boolean updateEdgeWeight(U orig, U dest, double newWeight, int idx)

Arguments:

• orig: the first node of the edge.

• dest: the second node of the edge.

• newWeight: the new weight of the edge.

• idx: the number of the edge between the users to modify.
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Returns

• If the edge weight is updated, it returns true. If the edge does not exist, it cannot be updated.

9.2.3 Update edge types

If we want to modify the type of an edge, we have to use the following methods. In simple networks, we have to use:

boolean updateEdgeType(U orig, U dest, int newType)

Arguments:

• orig: the first node of the edge.

• dest: the second node of the edge.

• newType: the new type of the edge.

Returns

• If the edge weight is updated, it returns true. If the edge does not exist, it cannot be updated.

In multigraphs, we use the following method instead (the previous one just updates the first created edge between the
users):

boolean updateEdgeType(U orig, U dest, double newType, int idx)

Arguments:

• orig: the first node of the edge.

• dest: the second node of the edge.

• newType: the new type of the edge.

• idx: the number of the edge between the users to modify.

Returns

• If the edge type is updated, it returns true. If the edge does not exist, it cannot be updated.

9.2.4 Remove edges

Finally, if we want to remove an edge, we have to use the following method:

boolean removeEdge(U orig, U dest)

Arguments:

• orig: the first node of the edge.

• dest: the second node of the edge.

Returns

• If the edge weight is remove, it returns true. If the edge does not exist, it cannot be removed.

In multigraphs, we use the following method instead (the previous one just removes the first created edge between the
users):

boolean removeEdge(U orig, U dest, int idx)

9.2. Edges 23
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Arguments:

• orig: the first node of the edge.

• dest: the second node of the edge.

• idx: the number of the edge between the users to remove.

Returns

• If the edge type is updated, it returns true. If the edge does not exist, it cannot be updated.

Also, we provide a method to remove all the edges between two nodes in the multigraph:

boolean removeEdges(U orig, U dest)

Arguments:

• orig: the first node of the edges.

• dest: the second node of the edges.

Returns

• If the edge weight is remove, it returns true. If there are not edges between the users, they cannot be
removed.
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CHAPTER

TEN

ACCESSING THE PROPERTIES OF A NETWORK

In addition to the methods for modifying the structure of a social network, RELISON also provides methods for ac-
cessing to the basic information of a network: the nodes in the network, his neighbors, the weights and types of the
edges, etc. Here, we summarize how this can be done.

10.1 Users in the network

The first element we explain how to access are the nodes in the network. In order to access the complete set of nodes,
we can use the following method:

Stream<U> getAllNodes()

Returns

• An stream object containing the identifiers of all the nodes in the network.

If, instead of accessing to them, we just need to count them, we can use the following method of the graphs:

long getVertexCount()

Returns

• The number of vertices (nodes, users) in the network graph.

10.2 Edge properties

The next element we can access are the edges. If we know the endpoints of the edge, we can access their different
properties. We differentiate four methods here:

10.2.1 Edge existence

The first method allows us to know if there is a link between two users. The method signature is:

boolean containsEdge(U orig, U dest)

Arguments

• orig: the first node.

• dest: the second node.
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Returns

• true if there is (at least) an edge, false otherwise.

In multigraphs, there is another method which allows us to obtain the number of edges between a pair of users:

int getNumEdges(U orig, U dest)

Arguments

• orig: the first node.

• dest: the second node.

Returns

• the number of edges between the two nodes.

10.2.2 Edge weight

We might want to access the weight of an edge. For this, in simple graphs, we use the following method:

double getEdgeWeight(U orig, U dest)

Arguments

• orig: the first node.

• dest: the second node.

Returns

• the weight if it exists, NaN otherwise.

In the case of multigraphs, the previous method allows us to obtain the sum of all the edge weights. If we want to obtain
the individual weights, we have another method:

List<Double> getEdgeWeights(U orig, U dest)

Arguments

• orig: the first node.

• dest: the second node.

Returns

• a list containing all the edge weights if there is (at least) one edge between the users, null otherwise.

10.2.3 Edge types

We might want to access the type of an edge. For this, in simple graphs, we use the following method:

int getEdgeWeight(U orig, U dest)

Arguments

• orig: the first node.

• dest: the second node.

Returns
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• the type if it exists, -1 otherwise.

In the case of multigraphs, we have another method, which allows us to retrieve the weights of all the edges:

List<Integer> getEdgeTypes(U orig, U dest)

Arguments

• orig: the first node.

• dest: the second node.

Returns

• a list containing all the edge types if there is (at least) one edge between the users, null otherwise.

10.2.4 Edge number

The last method just allows us to determine how many edges our network has:

long getEdgeCount()

Returns

• the number of edges in the network.

10.3 Neighbors of a node

As accessing the edges in the network just by running over all the possible pairs of users and checking if the edge exists
would be very slow, RELISON provides methods for accessing the neighborhood of a user. We explain them here.

10.3.1 Existence of neighbors

The first group of methods study whether a node has (or not) neighbors in the network. Although there are several
methods for this, here we only explain the following one:

boolean hasNeighbors(U u, EdgeOrientation orient)

Arguments

• u: the node to study.

• orient: the orientation for selecting the neighbors (only useful in directed networks).

– IN: for identifying if the user has incoming neighbors.

– OUT: for identifying if the user has outgoing neighbors.

– UND: for identifying if the user has either incoming or outgoing neighbors.

– MUTUAL: for identifying if the user has neighbors who are both incoming and outgoing.

Returns

• true if the node has neighbors, false otherwise.

10.3. Neighbors of a node 27
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10.3.2 Count

The second group of methods allows us to identify how many neighbors a user has.

int getNeighbourhoodSize(U u, EdgeOrientation orient)

Arguments

• u: the node to study.

• orient: the orientation for selecting the neighbors (only useful in directed networks).

– IN: for retrieving the incoming neighbors.

– OUT: for retrieving the outgoing neighbors.

– UND: for retrieving either incoming or outgoing neighbors.

– MUTUAL: for retrieving the neighbors who are both incoming and outgoing.

Returns

• the number of neighbors of the user.

There is another method, that allows us to study the number of edges connected to a node. This value is the same as
the previous one in the case of simple networks, but it changes when it comes to multigraphs:

int degree(U u, EdgeOrientation orient)

Arguments

• u: the node to study.

• orient: the orientation for selecting the neighbors (only useful in directed networks).

– IN: for retrieving the incoming neighbors.

– OUT: for retrieving the outgoing neighbors.

– UND: for retrieving either incoming or outgoing neighbors.

– MUTUAL: for retrieving the neighbors who are both incoming and outgoing.

Returns

• the number of edges connected to the user (the degree), -1 if the user does not exist.

10.3.3 Neighbors

The third group of methods allows us to identify the actual neighbors of a user in the network. The method we introduce
here is the following:

Stream<U> get(U u, EdgeOrientation orient)

Arguments

• u: the node to study.

• orient: the orientation for selecting the neighbors (only useful in directed networks).

– IN: for retrieving the incoming neighbors.

– OUT: for retrieving the outgoing neighbors.

– UND: for retrieving either incoming or outgoing neighbors.
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– MUTUAL: for retrieving the neighbors who are both incoming and outgoing.

Returns

• an stream containing the identifier of the networks.

10.3.4 Weights

The fourth group of methods allows us to identify the weights of the nodes. We can use the following method:

Stream<Weight<U, Double>> getNeighbourhoodWeights(U u, EdgeOrientation orient)

Arguments

• u: the node to study.

• orient: the orientation for selecting the neighbors (only useful in directed networks).

– IN: for retrieving the incoming neighbors.

– OUT: for retrieving the outgoing neighbors.

– UND: for retrieving either incoming or outgoing neighbors.

– MUTUAL: for retrieving the neighbors who are both incoming and outgoing.

Returns

• an stream containing (user, weight) pairs. In multigraphs, a pair is included for each edge.

Additionally, in multigraphs, we can also use the following method:

Stream<Weight<U, Double>> getNeighbourhoodWeightsLists(U u, EdgeOrientation orient)

Arguments

• u: the node to study.

• orient: the orientation for selecting the neighbors (only useful in directed networks).

– IN: for retrieving the incoming neighbors.

– OUT: for retrieving the outgoing neighbors.

– UND: for retrieving either incoming or outgoing neighbors.

– MUTUAL: for retrieving the neighbors who are both incoming and outgoing.

Returns

• an stream containing (user, list of weights) pairs.

10.3.5 Edge types

The fifth and last group of methods allows us to identify the weights of the nodes. We can use the following method:

Stream<Weight<U, Integer>> getNeighbourhoodTypes(U u, EdgeOrientation orient)

Arguments

• u: the node to study.

• orient: the orientation for selecting the neighbors (only useful in directed networks).
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– IN: for retrieving the incoming neighbors.

– OUT: for retrieving the outgoing neighbors.

– UND: for retrieving either incoming or outgoing neighbors.

– MUTUAL: for retrieving the neighbors who are both incoming and outgoing.

Returns

• an stream containing (user, type) pairs. In multigraphs, a pair is included for each edge.

Additionally, in multigraphs, we can also use the following method:

Stream<Weight<U, Integer>> getNeighbourhoodTypesLists(U u, EdgeOrientation orient)

Arguments

• u: the node to study.

• orient: the orientation for selecting the neighbors (only useful in directed networks).

– IN: for retrieving the incoming neighbors.

– OUT: for retrieving the outgoing neighbors.

– UND: for retrieving either incoming or outgoing neighbors.

– MUTUAL: for retrieving the neighbors who are both incoming and outgoing.

Returns

• an stream containing (user, list of types) pairs.

10.4 Adjacency matrix

In addition to the graph object, we can represent the network using the adjacency matrix of the network. This matrix has
in the (𝑢, 𝑣) coordinate, the weight of the edge between nodes 𝑢 and 𝑣. We can obtain this matrix using the following
method:

double[][] getAdjacencyMatrix(EdgeOrientation orient)

Arguments

• orient: the orientation for selecting the matrix (only useful in directed networks).

– IN: the (𝑢, 𝑣) coordinate contains the weight of the (𝑣, 𝑢) weight.

– OUT: the (𝑢, 𝑣) coordinate contains the weight of the (𝑢, 𝑣) weight (natural adjacency matrix)

– UND: the (𝑢, 𝑣) coordinate contains the 𝑤(𝑢, 𝑣) + 𝑤(𝑣, 𝑢).

– MUTUAL: the (𝑢, 𝑣) coordinate contains the 𝑤(𝑢, 𝑣) + 𝑤(𝑣, 𝑢) value if both edges exist, 0 otherwise.

Returns

• an array containing the matrix.

We should note that the nodes in the network can be represented by any type of identifier (int, long, string, etc.). So, in
order to map these identifiers to the indexes in the matrix, we can use the following method:

Index<U> getAdjacencyMatrixMap()

Returns
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• an index, mapping user identifiers to indexes in the (0, numNodes-1) rank.
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CHAPTER

ELEVEN

SOCIAL NETWORK ANALYSIS

RELISON provides functionality for analyzing the structural properties of the social network graphs: vertex, links,
communities and graph properties can be easily computed thanks to our framework. We provide several ways to
determine the topological properties of networks: with a program which straightforwardly allows you to compute
any of the included social network properties in the framework by reading a configuration file, and by integrating the
framework in your own library.

In this section, we provide some guide on how to do this.

The social network metrics are included in the SNA module of the framework, which can be imported into any Java
library using Maven as follows:

<dependency>
<groupId>es.uam.eps.ir</groupId>
<artifactId>RELISON-sna</artifactId>
<version>1.0.0</version>

</dependency>

33



RELISON, Release 1.0.0

34 Chapter 11. Social network analysis



CHAPTER

TWELVE

EXPERIMENTAL CONFIGURATION

In our framework, we include a program that simplifies measuring the structural properties of a given network. This
program can be executed as follows, once the binary for the library has been generated:

java -jar RELISON.jar sna network multigraph directed weighted selfloops metrics output␣
→˓(-communities comm1,comm2,...,commN --distances)

where

• network: a file containing the social network graph to analyze.

• multigraph: true if the network allows multiple edges between each pair of users, false otherwise.

• directed: true if the network is directed, false otherwise.

• weighted: true if we want to use the weights of the links, false otherwise (weights will be binary).

• selfloops: true if we allow links between a node and itself, false otherwise.

• metrics: a configuration file for reading the structural properties we want to measure (see Configuration file
below).

• :code:output: a directory in which to store the structural properties.

• Optional parameters:

– -communities comm1,comm2,...,commN: a comma-separated list of files containing community
partitions of the users.

– --distances: indicates that we want to pre-compute the distance-based metrics in the network (rec-
ommended if more than one is used).

12.1 Configuration file

In order to select a suitable set of metrics, the program receives, as input, a configuration file, specifying the different
properties we want to measure and analyze. This is a Yaml file with the following format:

metrics:
metric_name1:
type: vertex/edge/pair/graph/indiv. community/global community
params:
param_name1:
type: int/double/boolean/string/long/orientation/object
values: [value1,value2,...,valueN] / value
range:

(continues on next page)
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(continued from previous page)

- start: startingValue
end: endingValue
step: stepValue

- start: ...
objects:
name_of_the_object:
param_name1:
type: int/double/boolean/string/long/orientation/object
...

param_name2:
type: int/double/boolean/string/long/orientation/object
...

metric_name2:
...

In this configuration file, we identify each metric by each name, and, afterwards, we identify its type. We differentiate
between six groups of metrics:

• Vertex metrics: Properties of individual nodes in the network (e.g. degree, local clustering coefficient).

• Edge/Pair metrics: Properties of pairs of users in the network. If they are selected with the “edge” identifier,
the metrics are only computed over the set of links in the network.

• Graph metrics: Global properties of the network (e.g. global clustering coefficient).

• Individual community metrics: Properties of a single community in the partition (e.g. community size, de-
gree).

• Global community metrics: Global metrics depending on the community partition (e.g. modularity).
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THIRTEEN

INTEGRATE STRUCTURAL METRICS IN A JAVA PROJECT

By importing the SNA package, it is possible to use different structural metrics in your project, as well as provide novel
metrics which can be used within the framework. In this section, we summarize the main methods and functionalities
for each of the metric types.

• Vertex metrics

• Edge or pair metrics

• Graph metrics

• Individual community metrics

• Global community metrics

13.1 Vertex metrics

Vertex metrics allow the computation of metrics for each individual user in the network: properties like degree, local
clustering coefficient, etc. All vertex metrics inherit from the VertexMetric interface. This metric interface has the
following methods, which have to be implemented to develop new node metrics:

double compute(Graph<U> graph, U user)

This method just finds the metric value for a single node in the network.

Arguments:

• graph: the network we want to study.

• user: the identifier of the user.

Returns

• the metric value for the given user in the network.

It receives the graph we want to compute the metric for, and the user identifier.

Map<U, Double> compute(Graph<U> graph)

This method is useful for computing distributions, as it returns the metric value for each single user in the network.
Such values are stored in a map, indexed by the user identifier.

Arguments:

• graph: the network we want to study.

Returns
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• a map, indexed by user identifier, containing the metric values for all the nodes in the network.

Map<U, Double> compute(Graph<U> graph, Stream<U> users)

This method is similar to the previous one, but it limits the metric to the users in the provided stream. Again, it returns
a map, indexed by the user identifier.

Arguments:

• graph: the network we want to study.

• users: an stream containing the identifiers of a set of users.

Returns

• a map, indexed by user identifier, containing the metric values for all the users in the stream.

double averageValue(Graph<U> graph)

This method averages the metric over the whole set of users in the network.

Arguments:

• graph: the network we want to study.

Returns

• the average value of the metric.

double averageValue(Graph<U> graph, Stream<U> users)

This method averages the metric over an specified set of users.

Arguments:

• graph: the network we want to study.

• users: an stream containing the identifiers of a set of users.

Returns

• the average value of the metric for the provided users.

13.2 Edge or pair metrics

This family of metrics takes different pairs of users in the network, regardless of whether a link between them exist
or not. Examples of these metrics include distance between users or embeddedness. All these metrics inherit the
PairMetric interface, which has the following methods:

double compute(Graph<U> graph, U u, U v)

This method just finds the metric value for a single pair of users in the network.

Arguments:

• graph: the network we want to study.

• u: the first user in the pair.

• v: the second user in the pair.

Returns
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• the metric value for the given pair of users in the network.

It receives the graph we want to compute the metric for, and the user identifier.

Map<Pair<U>, Double> compute(Graph<U> graph)

This method is useful for computing distributions, as it returns the metric value for each pair of users in the network.
Such values are stored in a map, indexed by the pair of user identifiers.

Arguments:

• graph: the network we want to study.

Returns

• a map, indexed by a pair of user identifiers, containing the metric values for all the pairs in the network.

Map<U, Double> computeOnlyLinks(Graph<U> graph)

This method is similar to the previous one, but it limits the metric to the set of links in the network.

Arguments:

• graph: the network we want to study.

Returns

• a map, indexed by a pair of user identifiers, containing the metric values for all the pairs in the network.

Map<Pair<U>, Double> compute(Graph<U> graph, Stream<Pair<U>> pairs)

This method is similar limits the metric a provided set of user pairs.

Arguments:

• graph: the network we want to study.

• pairs: an stream containing the pairs of user identifiers.

Returns

• a map, indexed by a pair of user identifiers, containing the metric values for all the user pairs in the stream.

Function<U, Double> computeOrig(Graph<U> graph, U orig)

This method generates a function for obtaining the values of all pairs which have, as first node, a provided one.

Arguments:

• graph: the network we want to study.

• orig: the first node of the pairs.

Returns

• a function that allows to obtain the values for all pairs which have orig as first node.

Function<U, Double> computeDest(Graph<U> graph, U dest)

This method generates a function for obtaining the values of all pairs which have, as second node, a provided one.

Arguments:

• graph: the network we want to study.

• dest: the second node of the pairs.
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Returns

• a function that allows to obtain the values for all pairs which have orig as first node.

double averageValue(Graph<U> graph)

This method averages the metric over all the possible pairs of users in the network.

Arguments:

• graph: the network we want to study.

Returns

• the average value of the metric.

double averageValueOnlyLinks(Graph<U> graph)

This method averages the metric over all the links in the network.

Arguments:

• graph: the network we want to study.

Returns

• the average value of the metric.

double averageValue(Graph<U> graph, Stream<Pair<U>> pairs)

This method averages the metric over an specified set of user pairs.

Arguments:

• graph: the network we want to study.

• pairs: an stream containing the pairs of user identifiers to consider.

Returns

• the average value of the metric for the provided user pairs.

13.3 Graph metrics

This family of metrics analyzes structural properties of the whole network. They inherit from the GraphMetric inter-
face, which has the following methods:

double compute(Graph<U> graph)

This method finds the value of the structural metric for the given network.

Arguments:

• graph: the network we want to study.

Returns

• the value of the metric.
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13.4 Individual community metrics

Given a community partition of the network, this family of metrics allows the analysis of the properties of the different
communities. They inherit from the IndividualCommunityMetric interface, which has the following methods:

double compute(Graph<U> graph, Communities<U> comms, int indiv)

This method computes the metric for an individual community.

Arguments:

• graph: the network we want to study.

• comms: the community partition.

• indiv: the identifier of the community we want to study.

Returns

• the value of the metric for the given community.

Map<Integer, Double> compute(Graph<U> graph, Communities<U> comms)

This method computes the metric for all the communities in a partition. It returns the value in a map indexed by
community identifier.

Arguments:

• graph: the network we want to study.

• comms: the community partition.

Returns

• a map, indexed by community identifier, containing the value of the metric for each community.

double averageValue(Graph<U> graph, Communities<U> comms)

This method computes the average value of the metrics over the set of communities.

Arguments:

• graph: the network we want to study.

• comms: the community partition.

Returns

• the average value of the metric.

13.5 Global community metrics

Given a community partition of the network, this family of metrics allows the analysis of the properties of the whole
network which consider the community partition of the graph. They inherit from the CommunityMetric interface,
which has the following methods:

double compute(Graph<U> graph, Communities<U> comms)

This method finds the value of the structural metric for the given network.

Arguments:
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• graph: the network we want to study.

• comms: the community partition.

Returns

• the value of the metric.

42 Chapter 13. Integrate structural metrics in a Java project



CHAPTER

FOURTEEN

STRUCTURAL METRICS SUMMARY

RELISON provides the following metrics:

14.1 Vertex metrics

RELISON integrates the following vertex metrics.

• Betweenness

• Closeness

• Coreness

• Degree

• Eccentricity

• Eigenvector centrality

• Harmonic centrality

• HITS

• Katz centrality

• Local clustering coefficient

• PageRank

• Reciprocity rate

• Length

14.1.1 Betweenness

The betweenness centrality measures, for each node, the number of shortest paths which pass through the vertex.

Betweenness(𝑢) =
∑︁

(𝑣,𝑤):𝑢 ̸=𝑣,𝑤

𝜎𝑣𝑤(𝑢)

𝜎𝑣𝑤

where 𝜎𝑣𝑤 is the number of shortest paths between 𝑣 and 𝑤, and 𝜎𝑣𝑤(𝑢) is the number of shortest paths which pass
through node 𝑢.

Reference: M.E.J. Newman, M. Girvan. Finding and evaluating community structure in networks. Physical Review E
69(2), pp. 1-16 (2004)
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Parameters

• normalize: true if we want to normalize the coefficient, false otherwise.

Configuration file

Betweenness:
type: vertex
params:
normalize:
type: boolean
values: [true, false]

14.1.2 Closeness

This metric computes how close the studied user is to the rest of the nodes in the network. It is computed as:

Closeness(𝑢) =
|𝒰| − 1∑︀
𝑣 ̸=𝑢 𝑑(𝑢, 𝑣)

where 𝑑(𝑢, 𝑣) represents the distance between the two nodes.

If the graph is not fully connected, the value of this metric would always be equal to zero, so we have restricted its
computation to the strongly connected component that user 𝑢 belongs to.

References:

• M.E.J. Newman. Networks: an introduction (2010).

• L.C. Freeman. Centrality in Networks: I. Conceptual clarification, Social Networks 1, 1979, pp.215-239.

Configuration file

Closeness:
type: vertex

14.1.3 Coreness

A 𝑘-core in a network is the maximal subgraph of the network such that each vertex in the subgraph has, at least, degree
equal to 𝑘. The coreness of a node is equal to 𝑘 if the node belongs to the 𝑘-core, but not to the 𝑘 + 1-core.

The coreness of a node measures the maximum k-core it belongs to. A k-core is a subgraph of the network

References:

• Seidman, S.B. Network structure and minimum degree. Social Networks 5(3), pp. 269-287 (1983).

• Batagelj, V., Zaversnik. An O(m) Algorithm for Cores Decomposition of networks. arXiv (2003).

44 Chapter 14. Structural metrics summary



RELISON, Release 1.0.0

Parameters

• orientation: selection of the neighborhood of the node we want to use for computing the degrees. In undi-
rected neighbors, the value of the degree does not change when this parameter does. This is only useful in
directed networks. This allows the following parameters:

– IN: for using the in-degree.

– OUT: for using the out-degree.

– UND: for using the degree degree(𝑢) = in-degree(𝑢) + out-degree(𝑢)

– MUTUAL: for using the number of reciprocated links.

Configuration file

The configuration file for the degree is:

Coreness:
type: vertex
params:
orientation:

type: orientation
values: [IN/OUT/UND/MUTUAL]

14.1.4 Degree

This metric measures the number of adjacent links of the studied node. It is computed as:

degree(𝑢) = |Γ(𝑢)| = |{(𝑢, 𝑣) ∈ 𝐸}|

where Γ(𝑢) is the neighborhood of the node. Note that, in multigraphs, a user can appear several times in Γ(𝑢).

Related to this measure, we allow two additional measures: the inverse degree, which measures the multiplicative
inverse of the degree:

inv-degree(𝑢) =
1.0

degree(𝑢)

and the degree of the node in the complementary graph (what we call the complementary degree):

compl-degree(𝑢) = |𝒰| − degree(𝑢)

Note that we cannot compute this metric (and its inverse) in multigraphs, since the complementary of such graph is not
properly defined.

Parameters

• orientation: selection of the neighborhood of the node we want to use for computing the degree. In undirected
neighbors, the value of the degree does not change when this parameter does. This is only useful in directed
networks. This allows the following parameters:

– IN: for computing the in-degree.

– OUT: for computing the out-degree.

– UND: for computing the degree degree(𝑢) = in-degree(𝑢) + out-degree(𝑢)

– MUTUAL: for just counting the number of reciprocated links.
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Configuration file

The configuration file for the degree is:

Degree:
type: vertex
params:
orientation:

type: orientation
values: [IN/OUT/UND/MUTUAL]

for the inverse degree is:

Inverse degree:
type: vertex
params:
orientation:

type: orientation
values: [IN/OUT/UND/MUTUAL]

for the complementary degree:

Complementary degree:
type: vertex
params:
orientation:

type: orientation
values: [IN/OUT/UND/MUTUAL]

and for its inverse

Complementary inverse degree:
type: vertex
params:
orientation:

type: orientation
values: [IN/OUT/UND/MUTUAL]

14.1.5 Eccentricity

The eccentricity of a node measures the maximum (finite) distance between the node and any other vertex in the
network.

Eccentricity(𝑢) = max
𝑣:𝑑(𝑢,𝑣)<∞

𝑑(𝑢, 𝑣)

where 𝑑(𝑢, 𝑣) represents the distance between the two nodes.

Reference: P. Dankelmann, W. Goddard, C. Swart. The average eccentricity of a graph and its subgraphs. Utilitas
Mathematica 65(May), pp. 41-51 (2004)
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Configuration file

Eccentricity:
type: vertex

14.1.6 Eigenvector centrality

The eigenvector centrality measures the importance of a node based on the importance of its neighbors. The value
of the eigenvector centrality is the 𝑢-th coordinate of the vector 𝑥, where 𝑥 is the solution to the equation 𝐴𝑥 = 𝜆𝑥,
where 𝜆 is the largest eigenvalue o the adjacency matrix 𝐴. Or, in other words, the eigenvector centrality of a node is
the corresponding coordinate of the eigenvector associated to the largest eigenvalue of the adjacency matrix.

Reference: Bonacich, P.F. Power and centrality: A family of measures. American Journal of Sociology 92 (5), pp.
1170-1182 (1987)

Parameters

• orientation: selection of the neighborhood of the node we use for determining the adjacency matrix. In
undirected neighbors, the adjacency matrix does not change when this parameter does. This is only useful in
directed networks. This allows the following parameters:

– IN: 𝐴𝑢𝑣 = 𝑤(𝑣, 𝑢)

– OUT: 𝐴𝑢𝑣 = 𝑤(𝑢, 𝑣)

– UND: 𝐴𝑢𝑣 = 𝑤(𝑢, 𝑣) + 𝑤(𝑣, 𝑢)

– MUTUAL: 𝐴𝑢𝑣 = 𝑤(𝑢, 𝑣) + 𝑤(𝑣, 𝑢), but only if 𝑤(𝑢, 𝑣) · 𝑤(𝑣, 𝑢) > 0

Configuration file

Eigenvector:
type: vertex
params:
orientation:
type: orientation
values: [IN/OUT/UND/MUTUAL]

14.1.7 Harmonic centrality

The harmonic centrality can be studied as an alternative definition of Closeness. This metric defines the centrality as
the harmonic mean of the distances between the node and the rest of the users in the network. It allows infinite distances
(as they sum up just 0).

Harmonic(𝑢) =
1

|𝒰| − 1

∑︁
𝑣 ̸=𝑢

1

𝑑(𝑢, 𝑣)

where 𝑑(𝑢, 𝑣) represents the distance between the two nodes.

If the graph is not fully connected, the value of this metric would always be equal to zero, so we have restricted its
computation to the strongly connected component that user 𝑢 belongs to.

References:
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• M.E.J. Newman. Networks: an introduction (2010).

• L.C. Freeman. Centrality in Networks: I. Conceptual clarification, Social Networks 1, 1979, pp.215-239.

Configuration file

Harmonic:
type: vertex

14.1.8 HITS

The Hyperlink-Induced Topic Search (HITS) algorithm determines the importance of the nodes in the network accord-
ing to a random walk that. This random walk first traverses an outgoing link, and, afterwards, an incoming one. The
algorithm gives two scores to each node: an authority score (indicating the value of the node, according to those who
point to him), and a hub score (indicating the value of the node according to the pointed nodes). A good hub is a node
which points to good authorities, and a good authority is a node which is pointed by good hubs.

The scores are computed, iteratively, as:

auth(𝑢) =
∑︁

𝑣∈Γ𝑜𝑢𝑡(𝑢)

hub(𝑣)

hub(𝑢) =
∑︁

𝑣∈Γ𝑖𝑛(𝑣)

auth(𝑣)

where Γ𝑖𝑛(𝑣),Γ𝑜𝑢𝑡(𝑣) are, respectively, the set of incoming and outgoing neighbors of 𝑣. After each iteration, the
scores are normalized.

Reference: J.M. Kleinberg. Authoritative sources in a hyperlink environment. Journal of the ACM 46(5), PP. 604-632
(1999).

Parameters

• mode: indicates whether we want to compute the authority scores (true) or the hub scores (false)

Configuration file

HITS:
type: vertex
params:
mode:
type: boolean
values: [true, false]
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14.1.9 Katz centrality

The Katz centrality of a node estimates the importance of the nodes according to the paths between the node and the
rest of vertices in the network. It considers all the possible paths involving the user (not only the shortest ones, but all
the possible ones). Scores are computed as:

𝐾𝑎𝑡𝑧(𝑢) =

∞∑︁
𝑘=1

∑︁
𝑣∈𝒰

𝛼𝑘𝐴𝑘
𝑢𝑣

where 𝐴 is the adjacency matrix of the graph. In Katz centrality, the importance of the paths is weighted, so lower
distance paths are more important than those at large distances. Parameter :math:alpha is used to determine how
important long paths are.

Reference: Katz, L. A new status index derived from sociometric analysis. Psychometrika 18(1), pp. 33-43 (1953).

Parameters

• orientation: selection of the neighborhood of the node we use for determining the adjacency matrix. In
undirected neighbors, the adjacency matrix does not change when this parameter does. This is only useful in
directed networks. This allows the following parameters:

– IN: 𝐴𝑢𝑣 = 𝑤(𝑣, 𝑢)

– OUT: 𝐴𝑢𝑣 = 𝑤(𝑢, 𝑣)

– UND: 𝐴𝑢𝑣 = 𝑤(𝑢, 𝑣) + 𝑤(𝑣, 𝑢)

– MUTUAL: 𝐴𝑢𝑣 = 𝑤(𝑢, 𝑣) + 𝑤(𝑣, 𝑢), but only if 𝑤(𝑢, 𝑣) · 𝑤(𝑣, 𝑢) > 0

• alpha: a dump factor for giving less importance to long paths. 𝛼 ∈ (0, 1)

Configuration file

Katz:
type: vertex
params:
orientation:
type: orientation
values: [IN/OUT/UND/MUTUAL]

alpha:
type: double
range:
- start: 0.1
end: 0.99
step: 0.1
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14.1.10 Local clustering coefficient

The local clustering coefficient measures, the proportion of neighbors of the user who are connected.

𝐶𝐶(𝑢) =
{(𝑣, 𝑤) ∈ 𝐸|𝑣 ̸= 𝑤 ∧ 𝑣 ∈ Γ(𝑢) ∧ 𝑤 ∈ Γ(𝑢)}

|Γ(𝑢)|(|Γ(𝑢)| − 1)

We also allow computing this metric in the complementary graph (what we call complementary local clustering
coefficient)

Reference: D.J. Watts, S.H. Strogatz. Collective dynamics of ‘small-world’ networks. Nature 393(6684), pp. 440-442
(1998).

Parameters

• vSel: selection of the orientation for selecting the first neighbor of the user. This allows the following values:

– IN: we take the incoming neighbors of the users.

– OUT: we take the outgoing neighbors of the users.

– UND: we take the incoming and outgoing neighbors of the users.

– MUTUAL: we take those neighbors who are both incoming and outgoing at the same time.

• wSel: selection of the orientation for selecting the second neighbor of the user. This allows the following values:

– IN: we take the incoming neighbors of the users.

– OUT: we take the outgoing neighbors of the users.

– UND: we take the incoming and outgoing neighbors of the users.

– MUTUAL: we take those neighbors who are both incoming and outgoing at the same time.

Configuration file

For the original local clustering coefficient metric, the configuration file is:

Local clustering coefficient:
type: vertex
params:
vSel:
type: orientation
values: [IN/OUT/UND/MUTUAL]

wSel:
type: orientation
values: [IN/OUT/UND/MUTUAL]

whereas for the value in the complementary network, it is:

Complementary local clustering coefficient:
type: vertex
params:
vSel:
type: orientation
values: [IN/OUT/UND/MUTUAL]

wSel:
(continues on next page)
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(continued from previous page)

type: orientation
values: [IN/OUT/UND/MUTUAL]

14.1.11 PageRank

PageRank is a random walk algorithm designed to estimate the importance of the nodes in a network, according to
its graph structure. The value for a node represents the probability that a random walker who traverses the network
randomly choosing the links to follow travels through the node.

The importance of the node depends on three factors: a) the number of incoming nodes, b) the importance of those
nodes and c) the number of outgoing edges of these nodes. As the node receives more and more attention from other
nodes in the network, the importance of the node increases. For each of these incoming edges, the nodes receive an
importance score proportional to the importance of the origin. And, finally, the transferred importance is decreased
proportionally to the number of outgoing edges of that node.

The PageRank of a node is defined, recursively, as:

𝑃𝑎𝑔𝑒𝑅𝑎𝑛𝑘(𝑢) =
𝑟

|𝒰|
+ (1 − 𝑟)

∑︁
𝑤∈Γ𝑖𝑛(𝑢)

𝑃𝑎𝑔𝑒𝑅𝑎𝑛𝑘(𝑣)

|Γ𝑜𝑢𝑡(𝑣)|
+

1 − 𝑟

|𝒰|
∑︁

𝑤:|Γ𝑜𝑢𝑡(𝑤)|=0

𝑃𝑎𝑔𝑒𝑅𝑎𝑛𝑘(𝑤)

where :math:r represents the probability that the random walker chooses to teleport to any node in the network.

Again, we also provide tools to compute the complementary PageRank, i.e. the PageRank value of the nodes in the
complementary network.

Reference: S. Brin, L. Page. The anatomy of a large-scale hypertextual web search engine. 7th International Confer-
ence on World Wide Web (WWW 1998), Brisbane, Australia, pp. 107-117 (1998).

Parameters

• r: the teleport probability. 𝑟 ∈ (0, 1)

Configuration file

The Yaml file for the original PageRank might be as follows:

PageRank:
type: vertex
params:
r:
type: double
range:
- start: 0.1
end: 0.99
step: 0.1

whereas the file for the complementary variant is:

Complementary PageRank:
type: vertex
params:
r:

(continues on next page)
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(continued from previous page)

type: double
range:
- start: 0.1
end: 0.99
step: 0.1

14.1.12 Reciprocity rate

This metric measures the proportion of the edges involving the node which are reciprocal. This measure is only useful
for directed networks (it has value equal to 1 for all nodes in undirected ones).

Parameters

• orientation: selection of the set of edges to consider:

– IN: we take the incoming neighbors of the users.

– OUT: we take the outgoing neighbors of the users.

– UND: we take the incoming and outgoing neighbors of the users.

– MUTUAL: we take those neighbors who are both incoming and outgoing at the same time. In this case, the
metric is always equal to 1.

Configuration file

The Yaml file for the original PageRank might be as follows:

Reciprocity rate:
type: vertex
params:
orientation:
values: [IN/OUT/UND]

14.1.13 Length

This metric measures the length of a node, i.e. the sum of the weights of the links between this node and its neighbors:

Length(𝑢) =
∑︁

𝑣∈Γ(𝑢)

𝑤(𝑢, 𝑣)

where :math:Gamma(u) represents the neighborhood of user :math:u and :math:w(u,v) is the weight of the correspond-
ing link between :math:u and :math:v.
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Parameters

• orientation: selection of the set of edges to consider:

– IN: we take the incoming neighbors of the users.

– OUT: we take the outgoing neighbors of the users.

– UND: we take the incoming and outgoing neighbors of the users.

– MUTUAL: we take those neighbors who are both incoming and outgoing at the same time.

Configuration file

The Yaml file for the original PageRank might be as follows:

Length:
type: vertex
params:
orientation:
values: [IN/OUT/UND/MUTUAL]

14.2 Pair metrics

RELISON integrates a set of metrics which can be computed for any pair of users. All the metrics which can be applied
to links are included here, but they can be computed for any possible set of users.

RELISON integrates the following edge metrics:

• Betweenness

• Clustering coefficient increment

• Distance

• Distance without link

• Embeddedness

• Extended neighbor overlap

• Geodesics

• Neighbor overlap

• Reciprocity

• Preferential attachment

• Shrinking average shortest path length

• Shrinking diameter

• Weighted neighbor overlap

• Weight
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14.2.1 Betweenness

The betweenness centrality measures, for each pair of users, the number of shortest paths which pass through the edge
joining the pair of users. If the edge does not exist, it returns 0.

Betweenness(𝑢, 𝑣) =
∑︁
(𝑤,𝑥)

𝜎𝑤𝑥(𝑢, 𝑣)

𝜎𝑤𝑥

where 𝜎𝑤𝑥 is the number of shortest paths between 𝑤 and 𝑥, and 𝜎𝑤𝑥(𝑢, 𝑣) is the number of shortest paths which pass
through edge (𝑢, 𝑣).

Reference: M.E.J. Newman, M. Girvan. Finding and evaluating community structure in networks. Physical Review E
69(2), pp. 1-16 (2004)

Parameters

• normalize: true if we want to normalize the coefficient, false otherwise.

Configuration file

Betweenness:
type: edge
params:
normalize:
type: boolean
values: [true, false]

14.2.2 Clustering coefficient increment

This metric computes how much the global clustering coefficient of the network (see ADDLINK) would increase if
a link between the two users was added to the network. If the link already exists, this value is equal to zero. It just
considers the option where we select distance-2 paths as triads.

Reference: J. Sanz-Cruzado. Contact recommendation in social networks: algorithmic models, diversity and network
evolution. PhD thesis (2021).

Configuration file

Clustering coefficient increment:
type: pair
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14.2.3 Distance

The distance measures the minimum number of steps we have to take for travelling between two nodes. It is also known
as the shortest path length.

In addition to this metric, we also compute the efficiency or reciprocal shortest path length, which computes the
inverse of the distance between two users:

RSL(𝑢, 𝑣) =
1

𝛿(𝑢, 𝑣)

where 𝛿(𝑢, 𝑣) represents the distance between users 𝑢 and 𝑣.

References:

• J. Sanz-Cruzado, S.M. Pepa, P. Castells. Structural novelty and diversity in link prediction. 9th Interna-
tional Workshop on Modeling Social Media (MSM 2018) at The Web Conference (WWW 2018). The
Web Conference Companion, pp. 1347–1351.

• J. Sanz-Cruzado, P. Castells. Beyond Accuracy in Link Prediction. BIAS 2020: Bias and Social Aspects
in Search and Recommendation, pp 79-94.

Configuration file

For the original distance, this is computed as:

Distance:
type: pair

whereas for the reciprocal distance:

Reciprocal shortest path length:
type: pair

14.2.4 Distance without link

The distance measures the distance between two users in the network if we removed the edge between them. If the link
does not exist, the distance between the users is the usual one.

Configuration file

Distance without link:
type: pair

14.2.5 Embeddedness

The embeddedness of pair of users in a network measures the proportion of the neighbors of the two nodes who are
common to both of them. It indicates how redundant a link between the two nodes would be in the network. In case
the link exists, it can be considered a measure of the strength of the link.

Embeddedness(𝑢, 𝑣) =
|Γ(𝑢) ∖ {𝑣} ∩ Γ(𝑣) ∖ {𝑢}|
|Γ(𝑢) ∖ {𝑣} ∪ Γ(𝑣) ∖ {𝑢}|
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where Γ(𝑢) is the neighborhood of user 𝑢.

In our framework, we can compute two related measures: the first one, the weakness, measures the opposite: the
number of neighbors of the pair of users who are not common to both:

Weakness(𝑢, 𝑣) = 1 − Embeddedness(𝑢, 𝑣)

The second one is just the value of the metric in the complementary graph:

Compl. Embeddedness(𝑢, 𝑣) =
|𝒰| − |Γ(𝑢) ∪ Γ(𝑣)|
|𝒰| − |Γ(𝑢) ∩ Γ(𝑣)|

References:

• D. Easley, J.M. Kleinberg. Networks, crowds and markets (2010).

• J. Sanz-Cruzado, P. Castells. Beyond Accuracy in Link Prediction. BIAS 2020: Bias and Social Aspects
in Search and Recommendation, pp 79-94.

Parameters

All the variants share the same two parameters:

• uSel: selection of the orientation for the neighborhood of the starting node of the edge. This allows the following
values:

– IN: we take the incoming neighbors of the user.

– OUT: we take the incoming neighbors of the user.

– UND: we take the incoming and outgoing neighbors of the user.

– MUTUAL: we take those neighbors who are both incoming and outgoing at the same time.

• vSel: selection of the orientation for the neighborhood of the ending node of the edge. This allows the following
values:

– IN: we take the incoming neighbors of the user.

– OUT: we take the incoming neighbors of the user.

– UND: we take the incoming and outgoing neighbors of the user.

– MUTUAL: we take those neighbors who are both incoming and outgoing at the same time.

The natural configuration for the embeddedness of a links takes uSel = OUT and wSel = IN.

Configuration file

The configuration for the original embeddedness metric is:

Embeddedness:
type: pair
params:
uSel:
type: orientation
values: [IN/OUT/UND/MUTUAL]

vSel:
type: orientation
values: [IN/OUT/UND/MUTUAL]
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for the weakness one is:

Weakness:
type: pair
params:
uSel:
type: orientation
values: [IN/OUT/UND/MUTUAL]

vSel:
type: orientation
values: [IN/OUT/UND/MUTUAL]

and for the metric in the complementary graph:

Complementary embeddedness:
type: pair
params:
uSel:
type: orientation
values: [IN/OUT/UND/MUTUAL]

vSel:
type: orientation
values: [IN/OUT/UND/MUTUAL]

14.2.6 Extended neighbor overlap

This metric counts the intersection of the users at distance two from the first user with the neighborhood of the second:

ECN(𝑢, 𝑣) =

⃒⃒⃒⃒
⃒⃒
⎛⎝Γ(𝑢) ∪

⋃︁
𝑤∈Γ(𝑢)

Γ(𝑤)

⎞⎠ ∩ Γ(𝑣)

⃒⃒⃒⃒
⃒⃒

Another version, we name extended neighbor counted overlap, instead of straightforwardly counting the number of
common neighbors, they count the number of times they appear in the intersection:

ECCN(𝑢, 𝑣) = |Γ(𝑢) ∩ Γ(𝑣)| +
∑︁

𝑤∈Γ(𝑢)

|Γ(𝑤) ∩ Γ(𝑣)|

Parameters

• origin: true if we take the distance 2 neighborhood of the first user, false if we take the neighborhood of the
second.

• uSel: selection of the orientation for the neighborhood of the first node of the pair. This allows the following
values:

– IN: we take the incoming neighbors of the user.

– OUT: we take the incoming neighbors of the user.

– UND: we take the incoming and outgoing neighbors of the user.

– MUTUAL: we take those neighbors who are both incoming and outgoing at the same time.

• vSel: selection of the orientation for the neighborhood of the second node of the pair. This allows the following
values:
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– IN: we take the incoming neighbors of the user.

– OUT: we take the incoming neighbors of the user.

– UND: we take the incoming and outgoing neighbors of the user.

– MUTUAL: we take those neighbors who are both incoming and outgoing at the same time.

Configuration file

The configuration file for the original method is the following

Extended neighbor overlap:
type: pair
params:
origin:
type: boolean
values: [true/false]

uSel:
type: orientation
values: [IN/OUT/UND/MUTUAL]

vSel:
type: orientation
values: [IN/OUT/UND/MUTUAL]

while the configuration for the weighted variant is:

Extended neighbor counted overlap:
type: pair
params:
origin:
type: boolean
values: [true/false]

uSel:
type: orientation
values: [IN/OUT/UND/MUTUAL]

vSel:
type: orientation
values: [IN/OUT/UND/MUTUAL]

14.2.7 Geodesics

The geodesics metric measures the number of minimum distance paths between a pair of users.

Geodesics(𝑢, 𝑣) = |{𝑝 ∈ paths(u,v)|length(𝑝) = 𝛿(𝑢, 𝑣)}|

where 𝛿(𝑢, 𝑣) represents the distance between users 𝑢 and 𝑣, paths(𝑢, 𝑣) is the set of all paths between them, and
length(𝑝) is the length of the path 𝑝.

58 Chapter 14. Structural metrics summary



RELISON, Release 1.0.0

Configuration file

For the original distance, this is computed as:

Geodesics:
type: pair

whereas for the reciprocal distance:

Reciprocal shortest path length:
type: pair

14.2.8 Neighbor overlap

This metric just counts the number of common neighbors between two users in the network.

CN(𝑢, 𝑣) = |Γ(𝑢) ∩ Γ(𝑣)|

where Γ(𝑢) is the neighborhood of user 𝑢.

We can also compute what we call the complementary neighbor overlap metric, or, in other words, the value of this
metric in the complementary graph. Its equation is the following one:

CN(𝑢, 𝑣) = |𝒰| − |Γ(𝑢) ∪ Γ(𝑣)|

Parameters

• uSel: selection of the orientation for the neighborhood of the first node of the pair. This allows the following
values:

– IN: we take the incoming neighbors of the user.

– OUT: we take the incoming neighbors of the user.

– UND: we take the incoming and outgoing neighbors of the user.

– MUTUAL: we take those neighbors who are both incoming and outgoing at the same time.

• vSel: selection of the orientation for the neighborhood of the second node of the pair. This allows the following
values:

– IN: we take the incoming neighbors of the user.

– OUT: we take the incoming neighbors of the user.

– UND: we take the incoming and outgoing neighbors of the user.

– MUTUAL: we take those neighbors who are both incoming and outgoing at the same time.
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Configuration file

The configuration file for the original method is the following

Neighbor overlap:
type: pair
params:
uSel:
type: orientation
values: [IN/OUT/UND/MUTUAL]

vSel:
type: orientation
values: [IN/OUT/UND/MUTUAL]

while the configuration for the value of the metric in the complementary graph is:

Complementary common neighbors:
type: pair
params:
uSel:
type: orientation
values: [IN/OUT/UND/MUTUAL]

vSel:
type: orientation
values: [IN/OUT/UND/MUTUAL]

14.2.9 Preferential attachment

The preferential attachment measures to which extent a link between two pairs of users might appear under the prefer-
ential attachment model.

PA(𝑢, 𝑣) = |Γ(𝑢)||Γ(𝑣)|

where Γ(𝑢) represents the neighborhood of the user.

Parameters

• uSel: selection of the orientation for the neighborhood of the first node of the pair. This allows the following
values:

– IN: we take the incoming neighbors of the user.

– OUT: we take the incoming neighbors of the user.

– UND: we take the incoming and outgoing neighbors of the user.

– MUTUAL: we take those neighbors who are both incoming and outgoing at the same time.

• vSel: selection of the orientation for the neighborhood of the second node of the pair. This allows the following
values:

– IN: we take the incoming neighbors of the user.

– OUT: we take the incoming neighbors of the user.

– UND: we take the incoming and outgoing neighbors of the user.

– MUTUAL: we take those neighbors who are both incoming and outgoing at the same time.
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Configuration file

The configuration file for the original method is the following

Preferential attachment:
type: pair
params:
uSel:
type: orientation
values: [IN/OUT/UND/MUTUAL]

vSel:
type: orientation
values: [IN/OUT/UND/MUTUAL]

14.2.10 Reciprocity

Given a pair of users (𝑢, 𝑣), this metric just finds whether the link (𝑣, 𝑢) appears in the network. If it does, it returns
value 1.0. Value 0.0 is returned otherwise.

Configuration file

The configuration file for the original method is the following

Reciprocity:
type: pair

14.2.11 Shrinking average shortest path length

The shrinking average shortest path length metric computes the reduction of the average distance between two users in
the social network if the pair was added to it. In case the link exists, it returns 0.0.

We have another variation, we name shrinking neighbors shortest path length which restricts this calculation to the
neighbors of the involved nodes.

Configuration file

The configuration file for the original method is the following

Shrinking ASL:
type: pair

whereas for the limited version:

Shrinking neighbors ASL:
type: pair
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14.2.12 Shrinking diameter

The shrinking average shortest path length metric computes the reduction of the diameter of the network if the pair was
added to it. In case the link exists, it returns 0.0.

We have another variation, we name shrinking neighbors diameters which restricts this calculation to the neighbors
of the involved nodes.

Configuration file

The configuration file for the original method is the following

Shrinking diameter:
type: pair

whereas for the limited version

Shrinking neighbors diameter:
type: pair

14.2.13 Weakness

See Embeddedness

14.2.14 Weight

If it is available, it just measures the weight of an edge in the graph. In unweighted networks, all edges have weight
equal to 1. If the weight does not exist, it takes value equal to 0.

Configuration file

Weight:
type: edge

14.2.15 Weighted neighbor overlap

This metric just sums the weights of the common neighbors between two users in the network.

Weighted-CN(𝑢, 𝑣) =
∑︁

𝑥∈|Γ(𝑢)∩Γ(𝑣)

𝑤(𝑣, 𝑥)

where Γ(𝑢) is the neighborhood of user 𝑢, and 𝑤(𝑣, 𝑥) is the weight of the edge between 𝑤 and 𝑥.

We have another version, logarithmic weighted neighbor overlap which takes the logarithm of the weight instead:

Weighted-CN(𝑢, 𝑣) =
∑︁

𝑥∈|Γ(𝑢)∩Γ(𝑣)

(1 + log(𝑤(𝑣, 𝑥)))
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Parameters

• uSel: selection of the orientation for the neighborhood of the first node of the pair. This allows the following
values:

– IN: we take the incoming neighbors of the user.

– OUT: we take the incoming neighbors of the user.

– UND: we take the incoming and outgoing neighbors of the user.

– MUTUAL: we take those neighbors who are both incoming and outgoing at the same time.

• vSel: selection of the orientation for the neighborhood of the second node of the pair. This allows the following
values:

– IN: we take the incoming neighbors of the user.

– OUT: we take the incoming neighbors of the user.

– UND: we take the incoming and outgoing neighbors of the user.

– MUTUAL: we take those neighbors who are both incoming and outgoing at the same time.

Configuration file

The configuration file for the original method is the following

Weighted neighbor overlap:
type: pair
params:
uSel:
type: orientation
values: [IN/OUT/UND/MUTUAL]

vSel:
type: orientation
values: [IN/OUT/UND/MUTUAL]

while the configuration for the value of the metric in the complementary graph is:

Log weighted neighbor overlap:
type: pair
params:
uSel:
type: orientation
values: [IN/OUT/UND/MUTUAL]

vSel:
type: orientation
values: [IN/OUT/UND/MUTUAL]
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14.3 Graph metrics

RELISON integrates the following graph metrics.

• Average shortest path length

• Average reciprocal shortest path length

• Clustering coefficient

• Clustering coefficient complement

• Degree assortativity

• Degree Gini complement

• Degree Pearson correlation

• Density

• Diameter

• Edge Gini complement

• Infinite distances

• Radius

• Reciprocal average eccentricity

• Reciprocal diameter

• Reciprocity rate

14.3.1 Average shortest path length

As its name indicates, this metric just computes the average shortest path length of a graph. In order to deal with infinite
distance edges, we propose two options:

• Option 1: We only average over those pairs of users at finite distance.

• Option 2: We obtain the average shortest path length for each strongly connected component of the network,
and then, we average the result for the different components.

Parameters

• mode: “Non infinite distances” for option 1, “Components” for option 2.

Configuration file

ASL:
type: graph
params:
mode:
type: string
values: ["Non infinite distances", "Components"]
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14.3.2 Average reciprocal shortest path length

This metric computes the harmonic mean of the distances between pairs of users:

ARSL =
1

|𝒰|(|𝒰| − 1)

∑︁
𝑢,𝑣

1

𝛿(𝑢, 𝑣)

where 𝛿(𝑢, 𝑣) represents the distance between a pair of users.

Configuration file

ARSL:
type: graph
params:
mode:
type: string
values: ["Non infinite distances", "Components"]

14.3.3 Clustering coefficient

The global clustering coefficient of a social network graph measures the proportion of closed triads in the network:

CC(𝒢) =
|{(𝑢, 𝑣, 𝑤)|𝑢 ̸= 𝑤 ∧ (𝑢, 𝑣), (𝑣, 𝑤), (𝑢,𝑤) ∈ 𝐸}|

|{(𝑢, 𝑣, 𝑤)|𝑢 ̸= 𝑤 ∧ (𝑢, 𝑣), (𝑣, 𝑤) ∈ 𝐸}|

Parameters

• uSel: selection of the orientation for the first of the two links to consider in the triad (the (u,v) one).

– IN: we take the (v,u) link.

– OUT: we take the (u,v) link.

– UND: we take either the (u,v) or the (v,u) link (the one that exists)

– MUTUAL: we only consider that the pair (u,v) exists if both (u,v) and (v,u) links exist.

• vSel: selection of the orientation for the second of the two links in the triad (the (v,w) one).

– IN: we take the (v,w) link

– OUT: we take the (w,v) link.

– UND: we take either the (w,v) or the (v,w) link (the one that exists)

– MUTUAL: we only consider that the pair (u,v) exists if both (u,v) and (v,u) links exist.

The natural clustering coefficient can be chosen by taking uSel = IN and vSel = OUT.
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Configuration file

The configuration file for the original method is the following

Clustering coefficient:
type: graph
params:
uSel:
type: orientation
values: [IN/OUT/UND/MUTUAL]

vSel:
type: orientation
values: [IN/OUT/UND/MUTUAL]

14.3.4 Clustering coefficient complement

This metric is the complement of the clustering coefficient, as it takes measures the proportion of the open triads in the
network.

CCC(𝒢) =
|{(𝑢, 𝑣, 𝑤)|𝑢 ̸= 𝑤 ∧ (𝑢,𝑤) /∈ 𝐸 ∧ (𝑢, 𝑣), (𝑣, 𝑤) ∈ 𝐸}|

|{(𝑢, 𝑣, 𝑤)|𝑢 ̸= 𝑤 ∧ (𝑢, 𝑣), (𝑣, 𝑤) ∈ 𝐸}|

Parameters

• uSel: selection of the orientation for the first of the two links to consider in the triad (the (u,v) one).

– IN: we take the (v,u) link.

– OUT: we take the (u,v) link.

– UND: we take either the (u,v) or the (v,u) link (the one that exists)

– MUTUAL: we only consider that the pair (u,v) exists if both (u,v) and (v,u) links exist.

• vSel: selection of the orientation for the second of the two links in the triad (the (v,w) one).

– IN: we take the (v,w) link

– OUT: we take the (w,v) link.

– UND: we take either the (w,v) or the (v,w) link (the one that exists)

– MUTUAL: we only consider that the pair (u,v) exists if both (u,v) and (v,u) links exist.

The natural clustering coefficient can be chosen by taking uSel = IN and vSel = OUT.

Configuration file

The configuration file for the original method is the following

Clustering coefficient complement:
type: graph
params:
uSel:
type: orientation
values: [IN/OUT/UND/MUTUAL]

(continues on next page)
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(continued from previous page)

vSel:
type: orientation
values: [IN/OUT/UND/MUTUAL]

14.3.5 Degree assortativity

The degree assortativity measures to what extent users create links towards similar users in terms of their degree (i.e. if
users with small degree create links towards users with small degrees and users with large degree create links towards
users with large degree) or not.

In undirected networks, it is computed as:

Assortativity(𝒢) =
2 · |𝐸| ·

∑︀
( 𝑢, 𝑣)|Γ(𝑢)||Γ(𝑣)| −

(︀∑︀
𝑢 |Γ(𝑢)|2

)︀2
4𝑚

∑︀
𝑢 |Γ(𝑢)|3 − (

∑︀
𝑢 |Γ(𝑢)|2)

2

Reference : M.E.J. Newman. Mixing patterns in networks. Physical Review E, 67 026126 (2003)

Parameters

• orientation: selection for the degree to use.

– IN: we take the incoming neighbors of the users.

– OUT: we take the outgoing neighbors of the users.

– UND: we take the incoming and outgoing neighbors of the users.

– MUTUAL: we take those neighbors who are both incoming and outgoing at the same time.

Configuration file

The configuration file for the original method is the following

Degree assortativity:
type: graph
params:
orientation:
type: orientation
values: [IN/OUT/UND/MUTUAL]

14.3.6 Degree Pearson correlation

The degree assortativity measures the Pearson correlation of the degrees between the origin and destination endpoints
of the nodes.

Pearson(𝒢) =

∑︀
(𝑢,𝑣)∈𝐸 |Γ(𝑢)||Γ(𝑣)|√︀∑︀
𝑢 |Γ(𝑢)|2 ·

∑︀
𝑣 |Γ(𝑣)|2
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Parameters

• uSel: selection of the orientation for the neighborhood of the starting node of the edges. This allows the following
values:

– IN: we take the incoming neighbors of the users.

– OUT: we take the outgoing neighbors of the users.

– UND: we take the incoming and outgoing neighbors of the users.

– MUTUAL: we take those neighbors who are both incoming and outgoing at the same time.

• vSel: selection of the orientation for the neighborhood of the ending node of the edges. This allows the following
values:

– IN: we take the incoming neighbors of the users.

– OUT: we take the outgoing neighbors of the users.

– UND: we take the incoming and outgoing neighbors of the users.

– MUTUAL: we take those neighbors who are both incoming and outgoing at the same time.

Configuration file

The configuration file for the original method is the following

Degree Pearson:
type: graph
params:
uSel:
type: orientation
values: [IN/OUT/UND/MUTUAL]

vSel:
type: orientation
values: [IN/OUT/UND/MUTUAL]

14.3.7 Degree Gini complement

The degree Gini complement indicates how balanced the degree distribution of the network is. Values close to one
indicate that the degree distribution is flat, whereas values close to 0 show that a few users concentrate all the links in
the network.

DegreeGiniCompl(𝒢) = 1 − 1

|𝒰| − 1

|𝒰|∑︁
𝑖=1

(2𝑖− |𝒰| − 1)
|Γ(𝑢𝑖)|∑︀
𝑣 |Γ(𝑣)|

where Γ(𝑢) is the neighborhood of user 𝑢 and 𝑢𝑖 is the i-th node in the network with the smaller degree.
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Parameters

• orientation: selects the type of degree we use (only affects directed networks).

– IN: we take the in-degree of the users.

– OUT: we take the out-degree of the users.

– UND: we take the undirected degree of the users (in-degree + out-degree)

– MUTUAL: we take as the degree the number of mutual links.

Configuration file

The configuration file for the original method is the following

Degree Gini Complement:
type: graph
params:
orientation:
type: orientation
values: [IN/OUT/UND/MUTUAL]

14.3.8 Density

The density of a network measures the proportion of the possible number of edges between nodes which exist in the
network. This metric does not consider selfloops.

Density(𝒢) =
|𝐸|

|𝒰|(|𝒰| − 1)

Configuration file

The configuration file for the original method is the following

Density:
type: graph

14.3.9 Diameter

The diameter of a network measures the maximum (finite) distance between two users in the network.

Diameter(𝒢) = max
(𝑢,𝑣):𝛿(𝑢,𝑣)<∞

𝛿(𝑢, 𝑣)

It is equivalent to the maximum eccentricity of the network.
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Configuration file

The configuration file for the original method is the following

Diameter:
type: graph

14.3.10 Edge Gini complement

The edge Gini complement computes how balanced the number of links between different pairs of user is. This metric
has only sense over multigraphs, where multiple links between users are allowed. The metric formulation is similar to:

EdgeGini(𝒢) = 1 − 1

|𝒰|(|𝒰| − 1)

|𝒰|(|𝒰|−1)∑︁
𝑖=1

(2𝑖− |𝒰|(|𝒰| − 1) − 1)
|{(𝑢, 𝑣)𝑖 ∈ 𝐸}|

|𝐸|

where (𝑢, 𝑣)𝑖 is the i-th pair of users with an smaller number of links.

We differentiate three variants:

• Inter edge Gini complement: This metric does not consider the selfloops between the users. It takes the previous
equation (considering that 𝐸 does not have selfloops).

• Semi-complete edge Gini complement: This metric stores selfloops as a different category for the Gini index,
i.e. we add an element to the sum, counting the total number of selfloops in the network.

• Complete edge Gini complement: This metric considers selfloops. In the previous equation, we would just
need to substitute |𝒰|(|𝒰| − 1) by |𝒰|2 when it appears.

Configuration file

The configuration for the inter edge Gini complement is:

Inter edge Gini complement:
type: graph

For the semi-complete variant is:

Semi-complete edge Gini complement:
type: graph

and, finally, the version considering selfloops is:

Complete edge Gini complement:
type: graph
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14.3.11 Infinite distances

This metric measures the number of node pairs which do not have a path between the first and the second in the network.

Configuration file

Infinite distances:
type: graph

14.3.12 Radius

If we consider the eccentricity values of all the users (i.e. the maximum finite distance between a user and the rest of
the network), the radius represents its minimum value.

Radius(𝒢) = min
𝑢

(︂
max

𝑣:𝛿(𝑢,𝑣)<∞
𝛿(𝑢, 𝑣)

)︂
where 𝛿(𝑢, 𝑣) represents the distance between two users.

Configuration file

Radius:
type: graph

14.3.13 Reciprocal average eccentricity

This metric computes the inverse value of the average eccentricity of the network.

If we consider the eccentricity values of all the users (i.e. the maximum finite distance between a user and the rest of
the network), the radius represents its minimum value.

RAE(𝒢) =
|𝒰|∑︀

𝑢 Eccentricity(𝑢)

References:

• J. Sanz-Cruzado, S.M. Pepa, P. Castells. Structural novelty and diversity in link prediction. 9th Interna-
tional Workshop on Modeling Social Media (MSM 2018) at The Web Conference (WWW 2018). The
Web Conference Companion, pp. 1347–1351.

• J. Sanz-Cruzado, P. Castells. Beyond Accuracy in Link Prediction. BIAS 2020: Bias and Social Aspects
in Search and Recommendation, pp 79-94.
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Configuration file

Reciprocal average eccentricity:
type: graph

14.3.14 Reciprocal diameter

This metric computes the inverse value of the diameter (see Diameter), so, when distances are reduced among the users
in the network, the value of this metric increases.

If we consider the eccentricity values of all the users (i.e. the maximum finite distance between a user and the rest of
the network), the radius represents its minimum value.

RD(𝒢) =
1

Diameter(𝒢)

where 𝛿(𝑢, 𝑣) represents the distance between two users.

References:

• J. Sanz-Cruzado, S.M. Pepa, P. Castells. Structural novelty and diversity in link prediction. 9th Interna-
tional Workshop on Modeling Social Media (MSM 2018) at The Web Conference (WWW 2018). The
Web Conference Companion, pp. 1347–1351.

• J. Sanz-Cruzado, P. Castells. Beyond Accuracy in Link Prediction. BIAS 2020: Bias and Social Aspects
in Search and Recommendation, pp 79-94.

Configuration file

Reciprocal diameter:
type: graph

14.3.15 Reciprocity rate

This metric computes the proportion of the edges in the network which are reciprocal.

Reciprocity(𝒢) =
|{(𝑢, 𝑣) ∈ 𝐸|(𝑣, 𝑢) ∈ 𝐸}|

|𝐸|

where 𝛿(𝑢, 𝑣) represents the distance between two users.

References:

• J. Sanz-Cruzado, S.M. Pepa, P. Castells. Structural novelty and diversity in link prediction. 9th Interna-
tional Workshop on Modeling Social Media (MSM 2018) at The Web Conference (WWW 2018). The
Web Conference Companion, pp. 1347–1351.

• J. Sanz-Cruzado, P. Castells. Beyond Accuracy in Link Prediction. BIAS 2020: Bias and Social Aspects
in Search and Recommendation, pp 79-94.
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Configuration file

Reciprocity:
type: graph

14.4 Individual community metrics

Given a community partition, it is possible to compute several metrics considering the different clusters of users.
Individual community metrics evaluate the structural properties for each community on its own. RELISON integrates
the following metrics:

• Degree

• Size

14.4.1 Degree

This metric measures the number of external adjacent links to a given community. It is also known as the cut of the
community when the out-degree is used.

degree(𝑐) = |{(𝑢, 𝑣) ∈ 𝐸 : 𝑢 ∈ 𝑐 ∧ 𝑣 /∈ 𝑐}|

where 𝑐 is the studied community.

Parameters

• orientation: selection of the neighborhood of the node we want to use for computing the degrees of the
communities. In undirected neighbors, the value of the degree does not change when this parameter does. This
is only useful in directed networks. This allows the following parameters:

– IN: for using the in-degree.

– OUT: for using the out-degree.

– UND: for using the degree degree(𝑐) = in-degree(𝑐) + out-degree(𝑐)

– MUTUAL: for using the number of reciprocated links.

Configuration file

Degree:
type: indiv. community
params:
orientation:
type: orientation
values: [IN,OUT,UND,MUTUAL]
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14.4.2 Size

This metric measures the number of nodes in a community

degree(𝑐) = |𝑐|

where 𝑐 is the studied community.

Configuration file

Size:
type: indiv. community

14.4.3 Volume

This metric measures the sum of the degrees of the nodes in a community.

vol(𝑐) =
∑︁
𝑢∈𝑐

|Γ(𝑢)|

where 𝑐 is the studied community.

Parameters

• orientation: selection of the neighborhood of the node we want to use for computing the degrees of the commu-
nities. In undirected neighbors, the value of the degree does not change when this parameter does. This is only
useful in directed networks. This allows the following parameters:

– IN: for using the in-degree.

– OUT: for using the out-degree.

– UND: for using the degree degree(𝑐) = in-degree(𝑐) + out-degree(𝑐)

– MUTUAL: for using the number of reciprocated links.

Configuration file

Volume:
type: indiv. community
params:
orientation:
type: orientation
values: [IN,OUT,UND,MUTUAL]
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14.5 Global community metrics

Given a community partition, it is possible to compute several metrics for the complete network considering such
partition. RELISON integrates the following metrics:

• Destiny community size

• Degree Gini complement

• Edge Gini complement

• Modularity

• Modularity complement

• Number of communities

• Size Gini complement

• Weak ties

14.5.1 Destiny community size

This metric computes the average size of the destination communities of the links connecting two different communities.

Configuration file

Destiny community size:
type: global community

14.5.2 Degree Gini complement

Estimates how balanced the degree distribution for the different communities is:

DegreeGiniCompl(𝒢|𝒞) = 1 − 1

|𝒞| − 1

|𝒞|∑︁
𝑖=1

(2𝑖− |𝒞| − 1)
Degree(𝑐𝑖)∑︀
𝑐′ Degree(𝑐′)

where 𝑐𝑖 is i-th community with smaller degree. We differentiate two variants:

• Inter degree Gini complement: it does not consider links from a community to itself.

• Complete degree Gini complement: it does consider links from a community to itself.

Parameters

• orientation: selection of the neighborhood of the node we want to use for computing the degrees of the
communities. In undirected neighbors, the value of the degree does not change when this parameter does. This
is only useful in directed networks. This allows the following parameters:

– IN: for using the in-degree.

– OUT: for using the out-degree.

– UND: for using the degree degree(𝑐) = in-degree(𝑐) + out-degree(𝑐)

– MUTUAL: for using the number of reciprocated links.
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Configuration file

The configuration for the metric variant which does not consider the links between node in the same community is:

Inter-community degree Gini:
type: global community
params:
orientation:
type: orientation
values: [IN,OUT,UND,MUTUAL]

while the version considering links between the nodes in the same community is:

Complete community degree Gini:
type: global community
params:
orientation:
type: orientation
values: [IN,OUT,UND,MUTUAL]

14.5.3 Edge Gini complement

The community edge Gini complement computes how balanced the number of links between different pairs of comm-
munities is. The metric formulation is:

CommEdgeGini(𝒢|𝒞) = 1 − 1

|𝒞|(|𝒞| − 1)

|𝒞|(|𝒞|−1)∑︁
𝑖=1

(2𝑖− |𝒞|(|𝒞| − 1) − 1)𝑝((𝑐1, 𝑐2)𝑖|𝒢, 𝒞)

where (𝑐1, 𝑐2)𝑖 is the i-th pair of communities with the smaller number of links between them and:

𝑝((𝑐1, 𝑐2)|𝒢, 𝒞) =
|{(𝑢, 𝑣) ∈ 𝐸|𝑐(𝑢) = 𝑐1 ∧ 𝑐(𝑣) = 𝑐2}|

|{(𝑢, 𝑣) ∈ 𝐸|𝑐(𝑢) ̸= 𝑐(𝑣)}|

where (𝑢, 𝑣)𝑖 is the i-th pair of users with an smaller number of links.

We differentiate three variants:

• Inter edge Gini complement: This metric does not consider links nodes inside the same community. It takes
the previous equation.

• Semi-complete edge Gini complement: This metric stores links between nodes in the same community as a
different category for the Gini index.

• Complete edge Gini complement: This metric considers links inside communities. In the previous equation,
we would just need to substitute |𝒞|(|𝒞| − 1) by |𝒞|2 when it appears, and |{(𝑢, 𝑣) ∈ 𝐸|𝑐(𝑢) ̸= 𝑐(𝑣)}| by 𝐸.

References:

• J. Sanz-Cruzado, S.M. Pepa, P. Castells. Structural novelty and diversity in link prediction. 9th Interna-
tional Workshop on Modeling Social Media (MSM 2018) at The Web Conference (WWW 2018). The
Web Conference Companion, pp. 1347–1351.

• J. Sanz-Cruzado, P. Castells. Beyond Accuracy in Link Prediction. BIAS 2020: Bias and Social Aspects
in Search and Recommendation, pp 79-94.

• J. Sanz-Cruzado, P. Castells. Enhancing Structural Diversity in Social Networks by Recommending
Weak Ties. 12th ACM Conference on Recommender Systems (RecSys 2018), pp. 233-241.
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Parameters

For the semi-complete and complete versions, we have a parameter:

• selfloops: true if we want to allow selfloops between the nodes, false otherwise.

Configuration file

The configuration for the inter edge Gini complement is:

Inter-community edge Gini complement:
type: global community

For the semi-complete variant is:

Semi-complete community edge Gini complement:
type: global community
params:
selfloops:
type: boolean
values: [true, false]

and, finally, the version considering links inside communities is:

Complete community edge Gini complement:
type: global community
params:
selfloops:
type: boolean
values: [true, false]

14.5.4 Modularity

The modularity of a network compares the number of links inside communities to the ones we would have in a random
graph keeping the degree distribution. It is correlated to the number of links inside communities. Its formulation is:

mod(𝒢|𝒞) =

∑︀
𝑢,𝑣

(︁
𝐴𝑢𝑣 − |Γ(𝑢)||Γ(𝑣)|

|𝐸| 1𝑐(𝑢)=𝑐(𝑣)

)︁
|𝐸| −

∑︀
𝑢,𝑣

Γ(𝑢)||Γ(𝑣)|
|𝐸| 1𝑐(𝑢)=𝑐(𝑣)

where 1𝑥 is equal to 1 when condition 𝑥 is true, 0 otherwise.

Reference: M.E.J. Newman, M. Girvan. Finding and evaluating community structure in networks. Physical Review E
69(2), pp. 1-16 (2004)
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Configuration file

Modularity:
type: global community

14.5.5 Modularity complement

This metric is computed as the complement of the modularity, so it measures the number of links between communities
in the network. Its formulation is:

MC(𝒢|𝒞) =
1 − mod(𝒢|𝒞)

2

References:

• J. Sanz-Cruzado, S.M. Pepa, P. Castells. Structural novelty and diversity in link prediction. 9th Interna-
tional Workshop on Modeling Social Media (MSM 2018) at The Web Conference (WWW 2018). The
Web Conference Companion, pp. 1347–1351.

• J. Sanz-Cruzado, P. Castells. Beyond Accuracy in Link Prediction. BIAS 2020: Bias and Social Aspects
in Search and Recommendation, pp 79-94.

• J. Sanz-Cruzado, P. Castells. Enhancing Structural Diversity in Social Networks by Recommending
Weak Ties. 12th ACM Conference on Recommender Systems (RecSys 2018), pp. 233-241.

Configuration file

Modularity complement:
type: global community

14.5.6 Number of communities

As its name indicates, this metric just takes the number of communities in the partition.

Configuration file

Num. communities:
type: global community

14.5.7 Size Gini complement

This metric indicates how balanced the distribution of the community sizes is.

SizeGiniCompl(𝒢|𝒞) = 1 − 1

|𝒞| − 1

|𝒞|∑︁
𝑖=1

(2𝑖− |𝒞| − 1)
Size(𝑐𝑖)

|𝒰|

where 𝑐𝑖 is i-th community with smaller size.
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Configuration file

Complete size Gini:
type: global community

14.5.8 Weak ties

This metric counts the number of links between different communities.

WT(𝒢|𝒞) = |{(𝑢, 𝑣) ∈ 𝐸|𝑐(𝑢) ̸= 𝑐(𝑣)}|

Reference: E. Ferrara, P. de Meo, G. Fiumara, A. Provetti. On Facebook, most ties are weak. Communications of the
ACM 57(11), pp. 78-84 (2012)

Configuration file

Weak ties:
type: global community
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CHAPTER

FIFTEEN

COMMUNITY DETECTION

In social network environments, it is common to group users. A common way to do this is community detection.
Community detection finds set of users tightly connected to each other, but sparsely connected to the rest of the network.
In the RELISON framework, we provide a set of community detection algorithms, which can be used for this. We
provide a program to easily compute this community partitions, and also, functionality for developing new approaches,
or integrating the included ones in Java libraries.

Community detection algorithms are included in the SNA module of the framework, which can be imported into any
Java library using Maven as follows:

<dependency>
<groupId>es.uam.eps.ir</groupId>
<artifactId>RELISON-sna</artifactId>
<version>1.0.0</version>

</dependency>
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CHAPTER

SIXTEEN

EXPERIMENTAL CONFIGURATION

In our framework, we include a program that simplifies finding the community division of a network. This program
can be executed as follows, once the binary for the library has been generated:

java -jar RELISON.jar communities network multigraph directed weighted selfloops␣
→˓algorithms output

where

• network: a file containing the social network graph to analyze.

• multigraph: true if the network allows multiple edges between each pair of users, false otherwise.

• directed: true if the network is directed, false otherwise.

• weighted: true if we want to use the weights of the links, false otherwise (weights will be binary).

• selfloops: true if we allow links between a node and itself, false otherwise.

• algorithms: a Yaml configuration file for reading the community detection algorithms we want to apply (see
Configuration file below).

• output: a directory in which to store the structural properties.

16.1 Configuration file

In order to select a suitable set of metrics, the program receives, as input, a configuration file, specifying the different
properties we want to measure and analyze. This is a Yaml file with the following format:

algorithms:
algorithm_name1:
param_name1:
type: int/double/boolean/string/long/orientation/object
value:
object:
name_of_the_object:
param_name1:
type: int/double/boolean/string/long/orientation/object
...

param_name2:
type: int/double/boolean/string/long/orientation/object
...

algorithm_name2:
...
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16.2 Output file

Once the community detection algorithm is generated, the community partition is stored into a file. Such file has the
following format, where each line is tab-separated:

node-id comm-id

where node-id is the identifier of the user in the network, and comm-id is the community number.
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CHAPTER

SEVENTEEN

INTEGRATE COMMUNITIES IN A JAVA PROJECT

By importing the SNA package, it is possible to use the community partitions of the network in a Java project, as well
as detect these partitions, or define novel community partition approaches. In this section we clarify how this can be
done.

• Communities

• Dendograms

• Community detection algorithms

17.1 Communities

The communities in a network represent a partition of the users. A node can only belong to one of these groups. In
order to manipulate community partitions, we include different interfaces in the framework.

The most important is the Communities class, which stores one of these community partitions. It identifies the different
communities with integer numbers, and has the following methods:

int getNumCommunities()

This method obtains the number of clusters in the partition.

IntStream getCommunities()

This method obtains an stream with the identifiers of the considered community partitions.

int getCommunity(U user)

Given a user in the network, it obtains the identifier of the community it belongs to.

Arguments:

• user: the identifier of the user.

Returns

• the identifier of the community it belongs to, or -1 if the user does not belong to any community.

Stream<U> getUsers(int community)

Arguments:

• community: the community identifier.

Returns:
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• an stream containing the users in the community.

void addCommunity()

This method adds a community to the partition.

boolean add(U user, int comm)

This function a user to a community.

Arguments:

• user: the user.

• comm: the community identifier.

Returns:

• true if the user is added, false otherwise.

int getCommunitySize(int comm)

Finally, this method counts the number of users in a given community.

Arguments:

• comm: the community identifier.

Returns:

• the number of users in the community.

17.2 Dendograms

Sometimes, community detection algorithms do not only find a community partition, but what we call a dendogram: a
tree containing different community partitions, where the leaves represent the nodes in the network, and intermediate
nodes consider the union of the communities represented by their children.

We provide the class Dendogram for reading and working with these structures, allowing to get community partitions
by the number of communities, or by obtaining communities of a given size.

It has the following methods:

Tree<U> getTree()

This method obtains the underlying tree of the dendogram.

Returns:

• the underlying tree of the dendogram.

Communities<U> getCommunitiesByNumber(int n)

Obtains a community partition containing, at most, n communities.

Arguments:

• n: the maximum number of communities.

Returns

• the desired community partition, or null if something failed.
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Map<Integer, Communities<U>> getCommunitiesByNumber()

It obtains all the possible community partitions by number.

Returns

• a map, indexed by the number of communities, containing the different community partitions.

Communities<U> getCommunitiesBySize(int size)

It obtains a partition of the network where the maximum number of users on each community is provided.

Arguments:

• size: the maximum number of users on each community.

Returns

• the community partition if everything goes well, null otherwise.

Map<Integer, Communities<U>> getCommunitiesBySize()

It obtains all the possible community partitions by size.

Returns

• a map, indexed by the maximum community size, containing the different community partitions.

17.3 Community detection algorithms

In order to detect communities in a network, we can use many different algorithms. Community detection algorithms
inherit the CommunityDetectionAlgorithm interface. This interface must be implemented in case we want to de-
velop novel approaches. It has the following methods:

Communities<U> detectCommunities(Graph<U> graph)

This method, given a network, identifies the community partition according to this algorithm.

Arguments:

• graph: the social network graph for detecting communities.

Returns

• the community partition if everything goes well, null otherwise.

Then, if the algorithm can find a dendogram, it also inherits the DendogramCommunityDetectionAlgorithm inter-
face, which adds the following method:

Dendogram<U> detectCommunityDendogram(Graph<U> graph)

which finds the dendogram of the network.

Arguments:

• graph: the social network graph for detecting communities.

Returns

• the dendogram if everything goes well, null otherwise.
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CHAPTER

EIGHTEEN

COMMUNITY DETECTION ALGORITHMS SUMMARY

RELISON provides the following algorithms:

18.1 Connectedness community detection algorithms

This family of community detection algorithms considers whether two users are connected in a network or not to
determine the community partition of the network. We differentiate two methods:

• Strongly connected components

• Weakly connected components

18.1.1 Strongly connected components

Under this algorithm, two nodes belong to the same component if there is a finite length path between them in both
directions. This method considers the network directionality. In undirected networks, it is equivalent to the Weakly
connected components algorithm.

Configuration file

Strongly connected components:

18.1.2 Weakly connected components

Under this algorithm, two nodes belong to the same component if there is a finite length path between them without
considering the direction of the edges.

Configuration file

The configuration file for the original method is the following

Weakly connected components:
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18.2 Modularity-based community detection algorithms

This family of community detection algorithms considers network properties to compute the partition. We have imple-
mented the following community detection algorithms.

• FastGreedy

• Girvan-Newman

• Infomap

• Label propagation

• Louvain

• Spectral clustering

18.2.1 FastGreedy

This is an agglomerative clustering method which starts with each node on a different community, and, each step, joins
the pair of communities which increases modularity the most (or decreases it the least). From the dendogram, we take
the partition maximizing the modularity of the network.

In the framework, we consider three variants of these method in addition to the original version. These additional
variants attempt to find not only a set of communities maximizing the modularity of the network, but, at the same time,
balancing the number of users on each community. The three additional variants are:

• Balanced FastGreedy: fixes a maximum community size, and, it applies again the community detection algo-
rithm over the communities larger than the fixed size.

• Gini weighted FastGreedy: joins the pair of communities that, at the same time, increase the modularity and
minimizes the Gini index of the community size distribution. Then, it chooses the partition maximizing the
modularity (as earlier).

• Size weighted FastGreedy: joins the pair of communities that maximize the modularity and minimize the dis-
tance between the number of users in the communities to join and the average number of users on each community.

Reference: M.E.J. Newman. Fast Algorithm for detecting community structure in networks. Physical Review E 69(6):
066133 (2004)

Parameters

The original FastGreedy approach does not consider any parameters, but the balanced and Gini weighted variants do.

For the balanced FastGreedy algorithm, we have the following parameters:

• size: the maximum allowed community size.

whereas for the Gini weighted FastGreedy, we take the following parameter:

• lambda: the weight given to the Gini index of the size distribution.
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Configuration file

The original FastGreedy algorithm has the following configuration file:

FastGreedy:

whereas the balanced variant has this one:

Balanced FastGreedy:
size:
type: int
value: 100

the Gini weighted approach has the following:

Gini weighted FastGreedy:
lambda:
type: double
value: 0.1

and the size weighted variant:

Size weighted FastGreedy:

18.2.2 Girvan-Newman

The Girvan-Newman algorithm generates the community partition by gradually removing the edge with the largest
betweenness in the network. It generates a dendogram, and the partition that maximizes the modularity of the network
is selected.

Reference: M. Girvan, M.E.J. Newman. Community structure in social and biological networks, Proc. Natl. Acad.
Sci. USA 99, 7821–7826 (2002)

Configuration file

Girvan-Newman:

18.2.3 Infomap

The Infomap algorithm computes a community partition of the network by computing the minimum length necessary
for describing a random walk in the network. For this it uses a two-level Huffman compressing code: the first one
differentiates communities in the network, and the second nodes inside of each community.

To compute this metric, we call to the original implementation of the algorithm, provided by the authors in http:
//mapequation.org.

Reference: M. Rosvall and C. Bergstrom. Maps of random walks on complex networks reveal community structure.
Proceedings of the National Academy of Sciences 105(4), pp. 1118-1123 (2008)

NOTE: As Infomap uses the original implementation (https://github.com/mapequation/infomap), at the moment, this
method only works on Linux.
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Parameters

• trials: the number of iterations of the most external loop of the algorithm.

Configuration file

Infomap:
trials:
type: int
value: 1

18.2.4 Label propagation

The label propagation algorithm starts with all nodes in different communities. Then, iteratively, each node selects the
community of the majority of its neigbors, until everything converges.

Reference: U.N. Raghavan, R. Albert, S. Kumara. Near linear time algorithm to detect communities in large-scale
networks. Physical Review E 76: 036106 (2007).

Configuration file

Label propagation:

18.2.5 Louvain

The Louvain algorithm applies a multi-level community detection algorithm. It starts with all the nodes in different
communities, and, iteratively, moves a node to another community in the network where the increment in the modularity
is maximum.

When the modularity does not vary, it condenses the network, so communities are now the nodes, and applies the
algorithm over that condensed network.

Reference: V. Blondel, J. Guillaume, R. Lambiotte, E. Lefebvre, Fast unfolding of communities in large networks.
Journal of Statistical Mechanics 10 (2008)

Parameters

• threshold: the minimum variance of the modularity. If in an iteration it changes less than this threshold, we
end the phase.
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Configuration file

Louvain:
threshold:
type: double
value: 0.0001

Spectral clustering

The spectral clustering algorithm is a community detection technique for finding a balanced set of communities. It uses
the max-flow min-cut theory to find a partition such as the number of edges between two sets is minimized, where a
cut between two communities is just the number of edges between them.

We consider two variants of this algorithm:

• Ratio cut spectral clustering: Minimizes the ratio cut of the partition, which is defined as:

RatioCut(𝒢|𝒞) =
1

|𝒞|
∑︁
𝑐

|{(𝑢, 𝑣) ∈ 𝐸|𝑢 ∈ 𝑐 ∧ 𝑣 /∈ 𝑐}|
|𝑐|

• Normalized cut spectral clustering: Minimizes the normalized cut of the partition, defined as:

RatioCut(𝒢|𝒞) =
1

|𝒞|
∑︁
𝑐

|{(𝑢, 𝑣) ∈ 𝐸|𝑢 ∈ 𝑐 ∧ 𝑣 /∈ 𝑐}|
vol(𝑐)

where

vol(𝑐) =
∑︁
𝑣∈𝑐

|Γ(𝑣)|

Reference: R. Zafarani, M.A. Abassi, H. Liu. Social Media Mining: An Introduction. Chapter 6. 2014

Parameters

• k: the desired number of communities.

Configuration file

For the ratio cut version, the configuration file would look as:

Ratio cut spectral clustering:
k:
type: int
value: 10

and, for the normalized cut version:

Normalized cut spectral clustering:
k:
type: int
value: 10
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CHAPTER

NINETEEN

LINK PREDICTION AND RECOMMENDATION

Networks are not static objects: they are evolving over time. One of the main elements that evolves over time is the
set of links in the network. Link prediction and link recommendation have studied the creation of new edges in the
network. Link prediction just tries to identify which of them would form naturally in the network in the future, whereas
link recommendation (also known as contact or people recommendation in the network) has a more active role, by
suggesting users to befriend in networks. In the end, they are both similar tasks.

In this framework, we provide functionalities and metrics for both tasks, which we define in this section.

In order to use these functionalities, it is important to import the following package using Maven:

<dependency>
<groupId>es.uam.eps.ir</groupId>
<artifactId>RELISON-linkpred</artifactId>
<version>1.0.0</version>

</dependency>
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CHAPTER

TWENTY

DATA PREPARATION

Before using some of the link prediction / recommendation algorithms and metrics, it is sometimes necessary to prepare
some data. For instance, content-based approaches take as input inverted indexes containing the contents generated by
each user in the network, and supervised methods need a suitable set of feature vectors for each target-candidate user
pairs.

In this section, we provide information about how we can generate these data.

20.1 Content index generator

Some algorithms and metrics use, as input, an index containing the information about the user-generated contents
associated to each user. In order to generate these indexes, we provide two programs, taking advantage of the Lucene
library (https://lucene.apache.org/). We detail here how to execute these programs.

20.1.1 User index generator

This is the Lucene index used by the Twittomender algorithm (and the novelty and diversity metrics). Each user has
associated a single document, built by concatenating the information pieces published either by the user, or by her
neighbors. In order to build this index, we have to execute the following program:

java -jar RELISON.jar index user graph multigraph directed weighted selfloops␣
→˓information-pieces header orientation index-route

where

• graph: a file containing the social network.

• multigraph: true if the network allows multiple edges between each pair of users, false otherwise.

• directed: true if the network is directed, false otherwise.

• weighted: true if we want to use the weights of the links, false otherwise (weights will be binary).

• selfloops: true if we allow links between a node and itself, false otherwise.

• information-pieces: a file containing the information pieces (See Information pieces file below).

• header: true if the file contains a header, false otherwise.

• orientation: * own: uses the pieces created by each user as their representation. * IN: uses the pieces created
by the incoming neighbors of the user as her representation. * OUT: uses the pieces created by the outgoing
neighbors of the user as her representation. * UND: uses the pieces created by both the outgoing and incoming
neighbors of the user as her representation. * MUTUAL: uses the pieces created by the mutual neighbors of the
user as her representation.
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• output: a directory in which to store the index.

20.1.2 Information pieces index generator

This is the Lucene index used by the Centroid CB algorithm. An user-generated content is related to each document in
the index. A relation between information pieces and creators is also stored.

java -jar RELISON.jar index infopiece graph multigraph directed weighted selfloops␣
→˓information-pieces header orientation index-route

where

• information-pieces: a file containing the information pieces (See Information pieces file below).

• header: true if the file contains a header, false otherwise.

• output: a directory in which to store the index.

20.1.3 Information pieces file

The information pieces (individual user-generated contents) file needs to have the following format (CSV divided by
tabs):

infoId userId text reprCount likeCount created truncated

where

• infoId: identifier of the information piece.

• userId: identifier of the creator.

• text: the content of the information piece.

• reprCount: number of times the piece has been repropagated.

• likeCount: number of likes the piece has been received.

• created: UNIX timestamp indicating the date of creation.

• truncated: whether we are taking the complete text, or just a small part.

The text must be in UTF-8 format, and user-generated contents are separated by line skips. Fields (like text) which
might have tabs or line skips inside must be properly escaped, and surrounded by “”.

20.2 Feature vector generation

In order to execute the supervised people recommendation / link prediction algorithms, it is first necessary to compute
the feature vectors for the different links involved in the recommendation. Here, we provide information about how
these features can be computed:

java -jar RELISON.jar featuregen train-network test-network multigraph directed weighted␣
→˓selfloops readtypes config output rec-length (-users test/all -print true/false -
→˓reciprocal true/false -distance max -feat-data file index -comms commfile)

where

• train-instance-network: a file containing a network for retrieving the feature vectors for the training set.
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• train-class-network: a file containing a network for retrieving the relevance of each training instance.

• test-instance-network: a file containing a network for retrieving the feature vectors for the test set.

• test-class-network: a file containing a network for retrieving the relevance of each test instance.

• directed: true if the network to study is directed, false otherwise.

• weighted-sampling: true if we use edge weights for the sampler selecting a suitable set of target-candidate
user pairs.

• weighted-classes: true if we use edge weights as class outputs (otherwise, binary classes).

• weighted-features: true if we use edge weights when computing the features.

• config: a Yaml file containing the information about a) samplers, b) metrics and algorithms for computing
features (see Configuration file below).

• train-sampling: a Yaml configurator containing the information about the sampling method for training target-
candidate user pairs.

• test-sampling: a Yaml configurator containing the sampling method for the test target-candidate user pairs.

• train-network : a file containing the test social network, which is used to evaluate the effectiveness of the
recommendation algorithms.

• multigraph: true if the network allows multiple edges between each pair of users, false otherwise.

• directed: true if the network is directed, false otherwise.

• weighted: true if we want to use the weights of the links, false otherwise (weights will be binary).

• selfloops: true if we allow links between a node and itself, false otherwise.

• readtypes: true if we want to read the types of the edges, false otherwise.

• config: a Yaml configuration file for reading the people recommendation algorithms and the evaluation metrics
we want to apply (see Configuration file below).

• output: a directory in which to store the structural properties.

• rec-length: the maximum number of links to recommend to each user.

• Optional arguments:

– -users test/all: indicates whether to generate recommendations for all the users (all) or just for
those who have links in the test set (test). By default: all.

– -print true/false: indicates whether we want to print the recommendations or not. By default:
true.

– -reciprocal true/false: in directed networks, this parameter indicates whether we want to rec-
ommend reciprocal edges or not. By default: false.

– -distance max directed: max indicates the maximum distance between the target and the can-
didate users. directed indicates whether we want to consider link orientation when computing such
distance. By default, it does not limit the distance.

– -feat-data file index: in case we want to compute feature-based metrics, file specifies the loca-
tion of a feature file (user-feature-value tab-separated triplets), or an index containing the features. If
index is equal to true, we consider that file points to an index.

– -comms commfile: route to a file containing a community partition of the network.
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20.2.1 Configuration file

In order to select a suitable set of metrics, the program receives, as input, a configuration file, specifying the features we
want to use. These features can be either a) the score of a recommendation for the link or b) the result of an structural
metric. The configuration file is as it follows:

algorithms:
algorithm_name1:
param_name1:
type: int/double/boolean/string/long/orientation/object
values: [value1,value2,...,valueN] / value
range:
- start: startingValue
end: endingValue
step: stepValue

- start: <...>
objects:
name_of_the_object:
param_name1:
type: int/double/boolean/string/long/orientation/object
<...>

param_name2:
type: int/double/boolean/string/long/orientation/object
<...>

algorithm_name2:
...

metrics:
metric_name1:
type: vertex/pair
params:
param_name1:
type: int/double/boolean/string/long/orientation/object
values: [value1,value2,...,valueN] / value
range:
- start: startingValue
end: endingValue
step: stepValue

- start: <...>
objects:
name_of_the_object:
param_name1:
type: int/double/boolean/string/long/orientation/object
<...>

param_name2:
type: int/double/boolean/string/long/orientation/object
<...>

metric_name2:
<...>

where algorithms shows the part of the configuration file dedicated to the parameter grid of the people recommenda-
tion algorithms, whereas the metric tag shows the start of the structural metrics to use. At the moment, this program
does only admit metrics working over users (they are applied over both the target and candidate users) and over pairs
of users.

Finally, there are two more configuration files to consider, which apply a sampling strategy to select a suitable set of
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target-user candidate pairs for generating the features. These configuration files are considered as follows:

samplers:
sampler_algorithm:
param_name1:
type: int/double/boolean/string/long/orientation/object
value: value
object:
name_of_the_object:
name: object_name
params:
object_param_name1:
type: int/double/boolean/string/long/orientation/object
value: value

object_param_name2:
type: int/double/boolean/string/long/orientation/object
<...>

<...>

20.2.2 Output files

This program produces as outcome the LETOR feature files. For more information about this format, see http://terrier.
org/docs/v4.0/learning.html

20.3 Feature vector samplers

In order to select the possible target-candidate user pairs for generating feature vectors for supervised methods, the
RELISON library provides several methods. We summarize them below:

• All

• Distance two

• Distance two link prediction

• Link prediction

• Recommender

20.3.1 All

This sampler selects all the possible target-candidate user pairs (it just removes pairs in the training test).

20.3. Feature vector samplers 101

http://terrier.org/docs/v4.0/learning.html
http://terrier.org/docs/v4.0/learning.html


RELISON, Release 1.0.0

Configuration file

All:

20.3.2 Distance two

This sampler just selects all the candidate users who share at least a common neighbor with the target user.

Parameters

• uSel: the neighborhood selection for the target user.

– IN: it considers the incoming neighborhood of the target user.

– OUT: it considers the outgoing neighborhood of the target user.

– UND: it considers the all the possible neighbors of the target users (Γ𝑜𝑢𝑡(𝑢) ∪ Γ𝑖𝑛(𝑢))

– MUTUAL: it considers as neighbors those who share a reciprocal link with the target user (Γ𝑜𝑢𝑡(𝑢) ∩
Γ𝑖𝑛(𝑢))

• vSel: the neighborhood selection for the candidate user.

– IN: it considers the incoming neighborhood of the candidate user.

– OUT: it considers the outgoing neighborhood of the candidate user.

– UND: it considers the all the possible neighbors of the candidate users (Γ𝑜𝑢𝑡(𝑣) ∪ Γ𝑖𝑛(𝑣))

– MUTUAL: it considers as neighbors those who share a reciprocal link with the candidate user (Γ𝑜𝑢𝑡(𝑣)∩
Γ𝑖𝑛(𝑣))

Configuration file

Distance two:
uSel:
type: orientation
value: IN/OUT/UND/MUTUAL

vSel:
type: orientation
value: IN/OUT/UND/MUTUAL

20.3.3 Distance two link prediction

This sampler just selects candidate users who share at least a common neighbor with the target user. It selects all the
target-candidate user pairs in that collection, along with an equal number of them.
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Parameters

• uSel: the neighborhood selection for the target user.

– IN: it considers the incoming neighborhood of the target user.

– OUT: it considers the outgoing neighborhood of the target user.

– UND: it considers the all the possible neighbors of the target users (Γ𝑜𝑢𝑡(𝑢) ∪ Γ𝑖𝑛(𝑢))

– MUTUAL: it considers as neighbors those who share a reciprocal link with the target user (Γ𝑜𝑢𝑡(𝑢) ∩
Γ𝑖𝑛(𝑢))

• vSel: the neighborhood selection for the candidate user.

– IN: it considers the incoming neighborhood of the candidate user.

– OUT: it considers the outgoing neighborhood of the candidate user.

– UND: it considers the all the possible neighbors of the candidate users (Γ𝑜𝑢𝑡(𝑣) ∪ Γ𝑖𝑛(𝑣))

– MUTUAL: it considers as neighbors those who share a reciprocal link with the candidate user (Γ𝑜𝑢𝑡(𝑣)∩
Γ𝑖𝑛(𝑣))

Configuration file

Distance two link prediction:
uSel:
type: orientation
value: IN/OUT/UND/MUTUAL

vSel:
type: orientation
value: IN/OUT/UND/MUTUAL

20.3.4 Link prediction

This sampler just selects all the target-candidate user pairs in the test set, along with an equal number of negative links
(not in the training set).

Configuration file

Link prediction:

20.3.5 Recommender

For each target user, it takes the top 𝑘 recommended people as the sampled individuals.
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Parameters

• k: the maximum number of target-candidate user pairs to retrieve for each target user.

• rec: the recommendation algorithm.

Configuration file:

Recommender:
k:
type: int
value: 1000

rec:
type: object
object:
name: recommender_name
params:
parameter_name1:
type: parameter_type
value: parameter_value

parameter_name2:
<...>

Any recommendation algorithm can be used here, so, take a look at the algorithm configuration to determine the best
option.
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EXPERIMENTAL CONFIGURATION

As there are many programs in the framework which we can use, we summarize here how they can be configured and
used:

21.1 Link recommendation experiments

The RELISON framework provides a program for recommending people in social network environments. After the
binary for the library is generated, we can use the program with the following terminal command:

java -jar RELISON.jar recommendation train-network test-network multigraph directed␣
→˓weighted selfloops readtypes config output rec-length (-users test/all -print true/
→˓false -reciprocal true/false -distance max -feat-data file index -comms commfile)

where

• train-network: a file containing the training social network, which is taken as input to recommenders.

• test-network : a file containing the test social network, which is used to evaluate the effectiveness of the
recommendation algorithms.

• multigraph: true if the network allows multiple edges between each pair of users, false otherwise.

• directed: true if the network is directed, false otherwise.

• weighted: true if we want to use the weights of the links, false otherwise (weights will be binary).

• selfloops: true if we allow links between a node and itself, false otherwise.

• readtypes: true if we want to read the types of the edges, false otherwise.

• config: a Yaml configuration file for reading the people recommendation algorithms and the evaluation metrics
we want to apply (see Configuration file below).

• output: a directory in which to store the structural properties.

• rec-length: the maximum number of links to recommend to each user.

• Optional arguments:

– -users test/all: indicates whether to generate recommendations for all the users (all) or just for
those who have links in the test set (test). By default: all.

– -print true/false: indicates whether we want to print the recommendations or not. By default:
true.

– -reciprocal true/false: in directed networks, this parameter indicates whether we want to rec-
ommend reciprocal edges or not. By default: false.
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– -distance max directed: max indicates the maximum distance between the target and the can-
didate users. directed indicates whether we want to consider link orientation when computing such
distance. By default, it does not limit the distance.

– -feat-data file index: in case we want to compute feature-based metrics, file specifies the loca-
tion of a feature file (user-feature-value tab-separated triplets), or an index containing the features. If
index is equal to true, we consider that file points to an index.

– -comms commfile: route to a file containing a community partition of the network.

21.1.1 Configuration file

In order to select a suitable set of metrics, the program receives, as input, a configuration file, specifying the different
people recommendation methods we want to apply and evaluate. This is a Yaml file with the following format:

algorithms:
algorithm_name1:
param_name1:
type: int/double/boolean/string/long/orientation/object
values: [value1,value2,...,valueN] / value
range:
- start: startingValue
end: endingValue
step: stepValue

- start: <...>
objects:
name_of_the_object:
param_name1:
type: int/double/boolean/string/long/orientation/object
<...>

param_name2:
type: int/double/boolean/string/long/orientation/object
<...>

algorithm_name2:
...

metrics:
metric_name1:
param_name1:
type: int/double/boolean/string/long/orientation/object
<...>

param_name2:
<...>

metric_name2:
<...>

where algorithms shows the part of the configuration file dedicated to the parameter grid of the people recommen-
dation algorithms, whereas the metric tag shows the start of the evaluation metric section of the Yaml file.
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21.1.2 Output files

This program produces two outcomes: the evaluation file and the recommendations.

Evaluation file

This file contains the evaluation metrics for each algorithm. The first line contains the header, whereas the rest show
the metric values for a single algorithm. Each line has the following (tab-separated) format:

Variant Fraction metric1 metric2 <...> metricN

where fraction represents the number of the algorithm (divided by the total number of algorithms in the comparison).

For example:

Variant Fraction P@10 R@10 nDCG@10
Random 0.5 0.001 0.001 0.0013
Popularity 1.0 0.4 0.23 0.3482

Recommendation file

This file contains the recommendations produced for the different users. It does not have a header, and each line has
the following (tab-separated) format:

TargetUserId CandidateUserId value

where the target-candidate user pairs are sorted by a) the target user and b) the score (in descending order). Order
between users might be arbitrary.

Example:

883345842 10671602 0.7839427836033016
883345842 242101122 0.7510278151340579
883345842 230377004 0.6487410202793975
883345842 19604744 0.6219403238554378
883345842 398306220 0.6129622813222247
883345842 181561712 0.525116653773563
883345842 176566242 0.525116653773563
883345842 105119490 0.525116653773563
883345842 11254812 0.5196496019742988
883345842 11348282 0.5094869396470944
883609597 430916286 3.08258431711799
883609597 756033804 2.7629745300415265
883609597 11254812 2.629591896712651
<...>
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21.2 Link prediction experiments

The RELISON framework provides a program for predicting the next links to appear in the social network. After the
binary for the library is generated, we can use the program with the following terminal command:

java -jar RELISON.jar prediction train-network test-network multigraph directed weighted␣
→˓selfloops readtypes config output rec-length (-users test/all -print true/false -
→˓reciprocal true/false -distance max -feat-data file index -comms commfile)

where

• train-network: a file containing the training social network, which is taken as input to recommenders.

• test-network : a file containing the test social network, which is used to evaluate the effectiveness of the
recommendation algorithms.

• multigraph: true if the network allows multiple edges between each pair of users, false otherwise.

• directed: true if the network is directed, false otherwise.

• weighted: true if we want to use the weights of the links, false otherwise (weights will be binary).

• selfloops: true if we allow links between a node and itself, false otherwise.

• readtypes: true if we want to read the types of the edges, false otherwise.

• config: a Yaml configuration file for reading the people recommendation algorithms and the evaluation metrics
we want to apply (see Configuration file below).

• output: a directory in which to store the structural properties.

• Optional arguments:

– -users test/all: indicates whether to generate predictions for all the users (all) or just for those
who have links in the test set (test). By default: all.

– -print true/false: indicates whether we want to print the prediction or not. By default: true.

– -reciprocal true/false: in directed networks, this parameter indicates whether we want to pre-
dict reciprocal edges or not. By default: false.

– -distance max directed: max indicates the maximum distance between the target and the can-
didate users. directed indicates whether we want to consider link orientation when computing such
distance. By default, it does not limit the distance.

– -feat-data file index: in case we want to compute feature-based metrics, file specifies the loca-
tion of a feature file (user-feature-value tab-separated triplets), or an index containing the features. If
index is equal to true, we consider that file points to an index.

– -comms commfile: route to a file containing a community partition of the network.
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21.2.1 Configuration file

In order to select a suitable set of metrics, the program receives, as input, a configuration file, specifying the different
people recommendation methods we want to apply and evaluate. This is a Yaml file with the following format:

algorithms:
algorithm_name1:
param_name1:
type: int/double/boolean/string/long/orientation/object
values: [value1,value2,...,valueN] / value
range:
- start: startingValue
end: endingValue
step: stepValue

- start: <...>
objects:
name_of_the_object:
param_name1:
type: int/double/boolean/string/long/orientation/object
<...>

param_name2:
type: int/double/boolean/string/long/orientation/object
<...>

algorithm_name2:
...

metrics:
metric_name1:
param_name1:
type: int/double/boolean/string/long/orientation/object
<...>

param_name2:
<...>

metric_name2:
<...>

where algorithms shows the part of the configuration file dedicated to the parameter grid of the people recommen-
dation algorithms, whereas the metric tag shows the start of the evaluation metric section of the Yaml file.

21.2.2 Output files

This program produces two outcomes: the evaluation file and the reranked recommendations.

Evaluation file

This file contains the evaluation metrics for each algorithm. The first line contains the header, whereas the rest show
the metric values for a single algorithm. Each line has the following (tab-separated) format:

Variant Fraction metric1 metric2 <...> metricN

where fraction represents the number of the algorithm (divided by the total number of algorithms in the comparison).

For example:
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Variant Fraction AUC F1-score@0.5
Random 0.5 0.5 0.5
Popularity 1.0 0.8 0.78

Link prediction file

This file contains the predictions produced by the algorithm. It does not have a header, and each line has the following
(tab-separated) format:

TargetUserId CandidateUserId value

where the target-candidate user pairs are sorted by b) the score (in descending order).

Example:

883345842 10671602 0.7839427836033016
113213211 242101122 0.7510278151340579
342433442 230377004 0.6487410202793975
234324232 19604744 0.6219403238554378
567578745 398306220 0.6129622813222247
234232333 181561712 0.525116653773563
<...>

21.3 Reranking experiments

After some recommendations have been generated, we might want to rerank them, so we can enhance some structural
property. We show here how we can do this using the framework. Once the binary has been generated, we just have to
execute the following command:

java -jar RELISON.jar reranking train-network test-network multigraph directed weighted␣
→˓selfloops readtypes rec-folder comm-file config output rec-length max-length (-users␣
→˓test/all -print true/false -reciprocal true/false -distance max -feat-data file index -
→˓comms commfile)

where

• train-network: a file containing the training social network, which is taken as input to recommenders.

• test-network : a file containing the test social network, which is used to evaluate the effectiveness of the
recommendation algorithms.

• multigraph: true if the network allows multiple edges between each pair of users, false otherwise.

• directed: true if the network is directed, false otherwise.

• weighted: true if we want to use the weights of the links, false otherwise (weights will be binary).

• selfloops: true if we allow links between a node and itself, false otherwise.

• readtypes: true if we want to read the types of the edges, false otherwise.

• rec-folder: a recommendation file / a directory containing recommendation files.

• comm-file: route to a file containing a community partition of the network.
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• config: a Yaml configuration file for reading the reranking algorithms and the evaluation metrics we want to
apply (see Configuration file below).

• output: a directory in which to store the reranked recommendations and the evaluation metrics.

• rec-length: the maximum number of links to recommend to each user.

• max-length: the maximum number of links on each user recommendation to consider during the reranking
phase (min. value should be rec-length).

• Optional arguments:

– -reciprocal true/false: in directed networks, this parameter indicates whether we allowed rec-
ommending reciprocal edges for the original recommendations or not. By default: false.

– -distance max directed: max indicates the maximum distance between the target and the candi-
date users. directed indicates whether we wanted to consider link orientation when computing such
distance. By default, it does not limit the distance.

– -feat-data file index: in case we want to compute feature-based metrics, file specifies the loca-
tion of a feature file (user-feature-value tab-separated triplets), or an index containing the features. If
index is equal to true, we consider that file points to an index.

21.3.1 Configuration file

In order to select a suitable set of metrics, the program receives, as input, a configuration file, specifying the different
people recommendation methods we want to apply and evaluate. This is a Yaml file with the following format:

rerankers:
reranker_name1:
param_name1:
type: int/double/boolean/string/long/orientation/object
values: [value1,value2,...,valueN] / value
range:
- start: startingValue
end: endingValue
step: stepValue

- start: <...>
objects:
name_of_the_object:
param_name1:
type: int/double/boolean/string/long/orientation/object
<...>

param_name2:
type: int/double/boolean/string/long/orientation/object
<...>

reranker_name2:
<...>

metrics:
metric_name1:
param_name1:
type: int/double/boolean/string/long/orientation/object
<...>

param_name2:
<...>

(continues on next page)
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metric_name2:
<...>

where algorithms shows the part of the configuration file dedicated to the parameter grid of the people recommen-
dation algorithms, whereas the metric tag shows the start of the evaluation metric section of the Yaml file.

21.3.2 Output files

This program produces two outcomes: the evaluation file and the reranked recommendations.

Evaluation file

This file contains the evaluation metrics for each algorithm. The first line contains the header, whereas the rest show
the metric values for a single algorithm. Each line has the following (tab-separated) format:

Variant Fraction metric1 metric2 <...> metricN

where fraction represents the number of the algorithm (divided by the total number of algorithms in the comparison).

For example:

Variant Fraction P@10 R@10 nDCG@10
Random 0.5 0.001 0.001 0.0013
Popularity 1.0 0.4 0.23 0.3482

Reranked recommendation file ^^^^^^^^^^^^^^^^^^^^~^^^^^^^ This file contains the reranked recommendations pro-
duced for the different users. It does not have a header, and each line has the following (tab-separated) format:

TargetUserId CandidateUserId value

where the target-candidate user pairs are sorted by a) the target user and b) the score (in descending order). Order
between users might be arbitrary.

Example:

883345842 10671602 0.7839427836033016
883345842 242101122 0.7510278151340579
883345842 230377004 0.6487410202793975
883345842 19604744 0.6219403238554378
883345842 398306220 0.6129622813222247
883345842 181561712 0.525116653773563
883345842 176566242 0.525116653773563
883345842 105119490 0.525116653773563
883345842 11254812 0.5196496019742988
883345842 11348282 0.5094869396470944
883609597 430916286 3.08258431711799
883609597 756033804 2.7629745300415265
883609597 11254812 2.629591896712651
<...>
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21.4 Effects on the network structure

The RELISON framework provides a program for determining the effect of link prediction and recommendation al-
gorithms might have over the network structure. For this, the program adds the set of recommended links over the
network structure, and computes structural metrics over that expanded network. In order to use this program, we use
the following command:

java -jar RELISON.jar effects train-network test-network multigraph directed weighted␣
→˓selfloops readtypes rec-folder comm-files config output rec-length full-graph onlyrel

where

• train-network: a file containing the training social network, which is taken as input to recommenders.

• test-network : a file containing the test social network.

• multigraph: true if the network allows multiple edges between each pair of users, false otherwise.

• directed: true if the network is directed, false otherwise.

• weighted: true if we want to use the weights of the links, false otherwise (weights will be binary).

• selfloops: true if we allow links between a node and itself, false otherwise.

• rec-folder: a recommendation file / a directory containing recommendation files.

• config: a Yaml configuration file for reading the structural metrics we want to apply (see Configuration file
below).

• output: a directory in which to store the metrics.

• rec-length: the maximum number of recommended links to each user to consider.

• full-graph: true if we use all edges/pairs to compute edge/pair metrics.

• onlyrel: true if we only add the relevant edges to the training network.

• Optional arguments:

– -communities file1,file2,...,fileN: a comma-separated list of files containing a community
partition of the network.

– --distances: true if we want to precompute distances between the users (by default: false). Recom-
mended if we use several distance-based metrics.

– --prediction user/global: we include this option if we want to read the outcome of a link predic-
tion. Then, user indicates that we add rec-length predicted links per user to the expanded network,
whereas global indicates that we just add the top rec-length of the prediction.

21.4.1 Configuration file

In order to select a suitable set of metrics, the program receives, as input, a configuration file, specifying the different
properties we want to measure and analyze. This is a Yaml file with the following format:

metrics:
metric_name1:
type: vertex/edge/pair/graph/indiv. community/global community
params:
param_name1:
type: int/double/boolean/string/long/orientation/object

(continues on next page)
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values: [value1,value2,...,valueN] / value
range:
- start: startingValue
end: endingValue
step: stepValue

- start: ...
objects:
name_of_the_object:
param_name1:
type: int/double/boolean/string/long/orientation/object
...

param_name2:
type: int/double/boolean/string/long/orientation/object
...

metric_name2:
...

In this configuration file, we identify each metric by each name, and, afterwards, we identify its type. We differentiate
between six groups of metrics:

• Vertex metrics: Properties of individual nodes in the network (e.g. degree, local clustering coefficient).

• Edge/Pair metrics: Properties of pairs of users in the network. If they are selected with the “edge” identifier,
the metrics are only computed over the set of links in the network.

• Graph metrics: Global properties of the network (e.g. global clustering coefficient).

• Individual community metrics: Properties of a single community in the partition (e.g. community size, de-
gree).

• Global community metrics: Global metrics depending on the community partition (e.g. modularity).
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CHAPTER

TWENTYTWO

INTEGRATE LINK RECOMMENDATION / PREDICTION
FUNCTIONALITIES IN A JAVA PROJECT

By importing the linkpred package, anyone can use link recommendation and prediction approaches and integrate them
in their code. We explore here how to do it, as well as how to define novel methods.

• Link recommendation

• Link prediction

22.1 Link recommendation

If we want to recommend people to any user of the social network, we can use any implemented people recom-
mendation algorithm. These algorithms implement the Recommender interface, originally defined for the RankSys
(https://ranksys.github.io) library. This interface has the following methods:

Recommendation<U,U> getRecommendation(U user)

This method obtains a recommendation. It does not limit the size of the recommendation, so it returns every recom-
mendable candidate user.

Arguments:

• user: the identifier of the user.

Returns

• the recommendation object (containing the target user and a list of sorted candidate user-score pairs).

Recommendation<U,U> getRecommendation(U user, int maxLength)

This method obtains a recommendation, containing (at most) a fixed number of candidate users.

Arguments:

• user: the identifier of the user.

• maxLength: the maximum number of candidate users to recommend.

Returns

• the recommendation object (containing the target user and a list of sorted candidate user-score pairs).

Recommendation<U,U> getRecommendation(U user, int maxLength, Predicate<U> filter)

This method obtains a recommendation, containing (at most) a fixed number of candidate users. Candidate users are
only considered if they pass a filter.
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Arguments:

• user: the identifier of the user.

• maxLength: the maximum number of candidate users to recommend.

• filter: a filter for selecting the set of candidate users.

Returns

• the recommendation object (containing the target user and a list of sorted candidate user-score pairs).

Recommendation<U,U> getRecommendation(U user, Predicate<U> filter)

This method obtains a recommendation for a single user. It does not limit the size of the recommendation, so it returns
every recommendable candidate user. Candidate users are only recommendable if they pass a filter.

Arguments:

• user: the identifier of the user.

• filter: a filter for selecting the set of candidate users.

Returns

• the recommendation object (containing the target user and a list of sorted candidate user-score pairs).

Recommendation<U,U> getRecommendation(U user, Stream<U> candidates)

This method obtains a recommendation for a single user, and receives the set of candidate users by argument. These
set of candidate users is ranked and returned.

Arguments:

• user: the identifier of the user.

• candidates: an stream containing the different users.

Returns

• the recommendation object (containing the target user and a list of sorted candidate user-score pairs).

22.2 Building new recommenders

In case we want to build new recommendation algorithms, we might want to implement all the previous functions. But
we can do it much simpler. Considering that we receive a FastGraph, we can create a method that inherits from the
UserFastRankingRecommender class.

These methods must use a FastGraph<U> in the constructor, and then, you only have to implement the following
method:

public Int2DoubleMap getScoresMap(int uidx)

This method generates all the possible scores for the target-candidate user pairs, and returns them in a map, indexed by
the identifier of the candidate user.

Arguments:

• user: the identifier of the user.

• candidates: an stream containing the different users.

Returns

116 Chapter 22. Integrate link recommendation / prediction functionalities in a Java project



RELISON, Release 1.0.0

• the recommendation object (containing the target user and a list of sorted candidate user-score pairs).

This would be, for example, the case of the Popularity algorithm, which we show below:

public class Popularity<U> extends UserFastRankingRecommender<U>
{

/**
* Link orientation for selecting the neighbours of the candidate node.
*/
private final EdgeOrientation vSel;

/**
* Constructor for recommendation mode.
*
* @param graph graph.
* @param vSel link orientation for selecting the neighbours of the candidate node.
*/
public Popularity(FastGraph<U> graph, EdgeOrientation vSel)
{

super(graph);
this.vSel = vSel;

}

/**
* Constructor for recommendation mode.
*
* @param graph graph.
*/
public Popularity(FastGraph<U> graph)
{

super(graph);
this.vSel = EdgeOrientation.IN;

}

@Override
public Int2DoubleMap getScoresMap(int uidx)
{

U u = this.uidx2user(uidx);

Int2DoubleMap scoresMap = new Int2DoubleOpenHashMap();
scoresMap.defaultReturnValue(-1.0);

this.getAllUsers().forEach(v -> scoresMap.put(this.item2iidx(v), this.getGraph().
→˓getNeighbourhoodSize(v, vSel) + 0.0));

return scoresMap;
}
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22.3 Link prediction

Finally, if we want to integrate link prediction methods in the code, we need to use the LinkPrediction interface,
which contains the following methods:

Prediction<U> getPrediction()

This method just finds ranks all the possible user-user pairs.

Returns

• a prediction: a sorted list of user-user-score triplets.

Prediction<U> getPrediction(int maxLength)

This method just finds ranks a fixed number of user-user pairs (at most).

Arguments:

• maxLength: the maximum number of links to predict.

Returns

• a prediction: a sorted list of user-user-score triplets.

Prediction<U> getPrediction(Predicate<Pair<U>> filter)

This method just finds ranks the set of possible user-user pairs passing a given filter.

Arguments:

• filter: the user-user pair filter.

Returns

• a prediction: a sorted list of user-user-score triplets.

Prediction<U> getPrediction(int maxLength, Predicate<Pair<U>> filter)

This method just finds ranks the set of possible user-user pairs passing a given filter. It only predicts a fixed number of
links.

Arguments:

• maxLength: the maximum number of links to predict.

• filter: the user-user pair filter.

Returns

• a prediction: a sorted list of user-user-score triplets.

Prediction<U> getPrediction(Stream<Pair<U>> candidates)

This method ranks a given set of pairs of users.

Arguments:

• candidates: a stream containing the pairs of users to consider.

Returns

• a prediction: a sorted list of user-user-score triplets.
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double getPredictionScore(U u, U v)

This method obtains the prediction score for a pair of users.

Arguments:

• u: the first user.

• v: the second user

Returns

• the prediction score for the given pair of users.

22.4 Using people recommendation algorithms as link predictors

People recommendation and link prediction are closely related (they differ on how the task is carried), so it is possible
to use link recommendation algorithms to predict the next links to appear in a network. For this, we include in the
framework a class, RecommendationLinkPredictor. This class receives in the constructor the recommender we
want to use.
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CHAPTER

TWENTYTHREE

LINK PREDICTION/RECOMMENDATION ALGORITHMS SUMMARY

The RELISON framework provides a comprehensive collection of link recommendation and prediction algorithms.
We summarize them in this section:

RELISON provides the following algorithms:

23.1 Baselines

This family of people recommendation algorithms includes some important sanity-check baselines to include in the
experiments.

• Random recommendation

• Popularity-based recommendation

23.1.1 Random recommendation

This algorithm generates random recommendation scores for each candidate user in the network.

Configuration file

Random:

23.1.2 Popularity-based recommendation

This algorithm recommends the set of most followed users in the network (i.e. those maximizing the in-degree).

Configuration file

Popularity:
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23.2 Content-based algorithms

This family of people recommendation algorithms considers feature information about the users (user-generated con-
tents, communities, etc. to produce the recommendations).

• Centroid CB

• Twittomender

23.2.1 Centroid CB

Content-based recommendation algorithm, based on a tf-idf scheme. Each piece of content published by a single user
is consdered as its content. Then, using some of these contents, a centroid using tf-idf weights is computed for each
user. The recommendation score of a link is just the cosine similarity between the centroids of two separated users.

Reference: J. Sanz-Cruzado, P. Castells. Enhancing Structural Diversity in Social Networks by Recommending Weak
Ties. 12th ACM Conference on Recommender Systems (RecSys 2018), 233-241 (2018).

Parameters

• index: a directory containing a Lucene index. In order to obtain it, it is necessary to execute the
CBIndexGenerator program over the set of contents of the users. This index stores the whole set of user-
generated contents (each content is considered a separate document), and each piece is identified by its author.

• orientation: (OPTIONAL) if this parameter is not available, we generate the centroid using just the set of
pieces created by the user. If we include this parameter, we create it by using the pieces of her neighbors (selected
according to this orientation value). It can take the possible values:

– IN: for using the contents of the incoming neighbors.

– OUT: for using the contents of the outgoing neighbors.

– UND: for using the contents of both the incoming and outgoing neighbors.

– MUTUAL: for using the contents of those networks who share a reciprocal link with the user.

Configuration file

centroidCB:
index:
type: String
values: [file1,file2,...,fileN]

(orientation:
type: orientation
values: [IN,OUT,UND,MUTUAL])

122 Chapter 23. Link prediction/recommendation algorithms summary



RELISON, Release 1.0.0

23.2.2 Twittomender

Content-based recommendation algorithm, based on a tf-idf scheme. Each user in the network is represented by the
concatenation of a set of user-generated contents, stored in an index. Then, the algorithm represents the user as a tf-idf
vector, and finds the recommendation score by computing the cosine similarity between the vectors of the target and
candidate users.

Reference: J. Hannon, M. Bennet, B. Smyth. Recommending Twitter Users to Follow Using Content and Collaborative
Filtering Approaches. 4th Annual International ACM Conference on Recommender Systems (RecSys 2010), 199-206
(2010).

Parameters

• index: a directory containing a Lucene index. In order to obtain it, it is necessary to execute the
TwittomenderIndexGenerator program over the set of contents of the users. This index stores each user
as a document.

Configuration file

Twittomender:
index:
type: String
values: [file1,...,fileN]

23.3 Friends of friends

Friends of friends algorithms represent one of the most well-known and commonly used family of link recommendation
and prediction algorithms. They are algorithms which consider the common neighbors between the target and the
candidate users to produce the recommendation scores. RELISON includes the following algorithms:

• Adamic-Adar

• Cosine similarity

• Hub depressed index

• Hub promoted index

• Jaccard

• Local Leicht-Holme-Newman index

• Most common neighbors

• Resource allocation

• Sørensen
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23.3.1 Adamic-Adar

The Adamic-Adar algorithm promotes users with a high number of common friends, but giving more importance to
those friends with low degree (as they are more unique to both friendship circles than popular users).

References:

• L.A. Adamic, E. Adar: Friends and neighbors on the Web. Social Networks, 25(3), 211–230 (2003)

• D. Liben-Nowell and J. Kleinberg. The link prediction problem for social networks. 12th International
Conference on Information and Knowledge Management (CIKM 2003), ACM, 556-559 (2003).

Parameters

• uSel: the neighborhood selection for the target user.

– IN: it considers the incoming neighborhood of the target user.

– OUT: it considers the outgoing neighborhood of the target user.

– UND: it considers the all the possible neighbors of the target users (Γ𝑜𝑢𝑡(𝑢) ∪ Γ𝑖𝑛(𝑢))

– MUTUAL: it considers as neighbors those who share a reciprocal link with the target user (Γ𝑜𝑢𝑡(𝑢)∩Γ𝑖𝑛(𝑢))

• vSel: the neighborhood selection for the candidate user.

– IN: it considers the incoming neighborhood of the candidate user.

– OUT: it considers the outgoing neighborhood of the candidate user.

– UND: it considers the all the possible neighbors of the candidate users (Γ𝑜𝑢𝑡(𝑣) ∪ Γ𝑖𝑛(𝑣))

– MUTUAL: it considers as neighbors those who share a reciprocal link with the candidate user (Γ𝑜𝑢𝑡(𝑣) ∩
Γ𝑖𝑛(𝑣))

• wSel: the neighborhood selection for the common neighbor.

– IN: it considers the incoming neighborhood of the common neighbor.

– OUT: it considers the outgoing neighborhood of the common neighbor.

– UND: it considers the all the possible neighbors of the common neighbors (Γ𝑜𝑢𝑡(𝑤) ∪ Γ𝑖𝑛(𝑤))

– MUTUAL: it considers as neighbors those who share a reciprocal link with the common neighbor (Γ𝑜𝑢𝑡(𝑤)∩
Γ𝑖𝑛(𝑤))

Configuration file

Adamic-Adar:
uSel:
type: orientation
values: [IN,OUT,UND,MUTUAL]

vSel:
type: orientation
values: [IN,OUT,UND,MUTUAL]

wSel:
type: orientation
values: [IN,OUT,UND,MUTUAL]
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23.3.2 Cosine similarity

Also known as the Salton index, this algorithms represents each user as a vector, where each other user in the network is
a coordinate. The weights of the edges between the original user and the rest of the network are taken as the coordinate
values. Then, the score is computed as the cosine between those vectors.

Reference: L. Lü, T. Zhou. Link Prediction in Complex Networks: A survey. Physica A: Statistical Mechanics and its
Applications, 390(6), 1150-1170 (2011).

Parameters

• uSel: the neighborhood selection for the target user.

– IN: it considers the incoming neighborhood of the target user.

– OUT: it considers the outgoing neighborhood of the target user.

– UND: it considers the all the possible neighbors of the target users (Γ𝑜𝑢𝑡(𝑢) ∪ Γ𝑖𝑛(𝑢))

– MUTUAL: it considers as neighbors those who share a reciprocal link with the target user (Γ𝑜𝑢𝑡(𝑢)∩Γ𝑖𝑛(𝑢))

• vSel: the neighborhood selection for the candidate user.

– IN: it considers the incoming neighborhood of the candidate user.

– OUT: it considers the outgoing neighborhood of the candidate user.

– UND: it considers the all the possible neighbors of the candidate users (Γ𝑜𝑢𝑡(𝑣) ∪ Γ𝑖𝑛(𝑣))

– MUTUAL: it considers as neighbors those who share a reciprocal link with the candidate user (Γ𝑜𝑢𝑡(𝑣) ∩
Γ𝑖𝑛(𝑣))

• weighted: (OPTIONAL) true to use the weights of the edges, false to consider them binary.

Configuration file

Cosine:
uSel:
type: orientation
values: [IN,OUT,UND,MUTUAL]

vSel:
type: orientation
values: [IN,OUT,UND,MUTUAL]

(weighted:
type: boolean
values: [true,false])
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23.3.3 Hub depressed index

Friends of friends approach for favoring the recommendation nodes with smaller degree than the target user.

References:

• L. Lü, T. Zhou, Y. Zhang. Predicting missing links via local information. European Physical Journal B
71, 623-630 (2009).

• E. Ravasz, A.L. Somera, D.A. Mongru, Z.N. Oltvai, A-L. Barabasi. Hierarchical Organization in
Metabolic Networks, Science 297 (2002)

Parameters

• uSel: the neighborhood selection for the target user.

– IN: it considers the incoming neighborhood of the target user.

– OUT: it considers the outgoing neighborhood of the target user.

– UND: it considers the all the possible neighbors of the target users (Γ𝑜𝑢𝑡(𝑢) ∪ Γ𝑖𝑛(𝑢))

– MUTUAL: it considers as neighbors those who share a reciprocal link with the target user (Γ𝑜𝑢𝑡(𝑢)∩Γ𝑖𝑛(𝑢))

• vSel: the neighborhood selection for the candidate user.

– IN: it considers the incoming neighborhood of the candidate user.

– OUT: it considers the outgoing neighborhood of the candidate user.

– UND: it considers the all the possible neighbors of the candidate users (Γ𝑜𝑢𝑡(𝑣) ∪ Γ𝑖𝑛(𝑣))

– MUTUAL: it considers as neighbors those who share a reciprocal link with the candidate user (Γ𝑜𝑢𝑡(𝑣) ∩
Γ𝑖𝑛(𝑣))

Configuration file

Hub depressed index:
uSel:
type: orientation
values: [IN,OUT,UND,MUTUAL]

vSel:
type: orientation
values: [IN,OUT,UND,MUTUAL]

23.3.4 Hub promoted index

Friends of friends approach for favoring the recommendation nodes with higher degree than the target user.

References:

• L. Lü, T. Zhou, Y. Zhang. Predicting missing links via local information. European Physical Journal B
71, 623-630 (2009).

• E. Ravasz, A.L. Somera, D.A. Mongru, Z.N. Oltvai, A-L. Barabasi. Hierarchical Organization in
Metabolic Networks, Science 297 (2002)

126 Chapter 23. Link prediction/recommendation algorithms summary



RELISON, Release 1.0.0

Parameters

• uSel: the neighborhood selection for the target user.

– IN: it considers the incoming neighborhood of the target user.

– OUT: it considers the outgoing neighborhood of the target user.

– UND: it considers the all the possible neighbors of the target users (Γ𝑜𝑢𝑡(𝑢) ∪ Γ𝑖𝑛(𝑢))

– MUTUAL: it considers as neighbors those who share a reciprocal link with the target user (Γ𝑜𝑢𝑡(𝑢)∩Γ𝑖𝑛(𝑢))

• vSel: the neighborhood selection for the candidate user.

– IN: it considers the incoming neighborhood of the candidate user.

– OUT: it considers the outgoing neighborhood of the candidate user.

– UND: it considers the all the possible neighbors of the candidate users (Γ𝑜𝑢𝑡(𝑣) ∪ Γ𝑖𝑛(𝑣))

– MUTUAL: it considers as neighbors those who share a reciprocal link with the candidate user (Γ𝑜𝑢𝑡(𝑣) ∩
Γ𝑖𝑛(𝑣))

Configuration file

Hub promoted index:
uSel:
type: orientation
values: [IN,OUT,UND,MUTUAL]

vSel:
type: orientation
values: [IN,OUT,UND,MUTUAL]

23.3.5 Jaccard

The Jaccard algorithm uses as a recommendation score the probability that any neighbor of the target and candidate
user is common to both.

References:

• P. Jaccard. Etude comparative de la distribution florale dans une portion des Alpes et des Jura. Bulletin
de la Societe Vaudoise des Sciences Naturelles 37(142),547–579 (1901)

• D. Liben-Nowell and J. Kleinberg. The link prediction problem for social networks. 12th International
Conference on Information and Knowledge Management (CIKM 2003), ACM, 556-559 (2003).

Parameters

• uSel: the neighborhood selection for the target user.

– IN: it considers the incoming neighborhood of the target user.

– OUT: it considers the outgoing neighborhood of the target user.

– UND: it considers the all the possible neighbors of the target users (Γ𝑜𝑢𝑡(𝑢) ∪ Γ𝑖𝑛(𝑢))

– MUTUAL: it considers as neighbors those who share a reciprocal link with the target user (Γ𝑜𝑢𝑡(𝑢)∩Γ𝑖𝑛(𝑢))

• vSel: the neighborhood selection for the candidate user.
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– IN: it considers the incoming neighborhood of the candidate user.

– OUT: it considers the outgoing neighborhood of the candidate user.

– UND: it considers the all the possible neighbors of the candidate users (Γ𝑜𝑢𝑡(𝑣) ∪ Γ𝑖𝑛(𝑣))

– MUTUAL: it considers as neighbors those who share a reciprocal link with the candidate user (Γ𝑜𝑢𝑡(𝑣) ∩
Γ𝑖𝑛(𝑣))

Configuration file

Jaccard:
uSel:
type: orientation
values: [IN,OUT,UND,MUTUAL]

vSel:
type: orientation
values: [IN,OUT,UND,MUTUAL]

23.3.6 Local Leicht-Holme-Newman index

This algorithm assigns high similarity to node pairs that have many neighbors in common in comparison to the expected
number of common neighbors in a configuration model.

Reference: E.A. Leicht, P. Holme, M.E.J. Newman. Vertex Similarity in Networks. Physical Review E 73(2): 026120
(2006).

Parameters

• uSel: the neighborhood selection for the target user.

– IN: it considers the incoming neighborhood of the target user.

– OUT: it considers the outgoing neighborhood of the target user.

– UND: it considers the all the possible neighbors of the target users (Γ𝑜𝑢𝑡(𝑢) ∪ Γ𝑖𝑛(𝑢))

– MUTUAL: it considers as neighbors those who share a reciprocal link with the target user (Γ𝑜𝑢𝑡(𝑢)∩Γ𝑖𝑛(𝑢))

• vSel: the neighborhood selection for the candidate user.

– IN: it considers the incoming neighborhood of the candidate user.

– OUT: it considers the outgoing neighborhood of the candidate user.

– UND: it considers the all the possible neighbors of the candidate users (Γ𝑜𝑢𝑡(𝑣) ∪ Γ𝑖𝑛(𝑣))

– MUTUAL: it considers as neighbors those who share a reciprocal link with the candidate user (Γ𝑜𝑢𝑡(𝑣) ∩
Γ𝑖𝑛(𝑣))
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Configuration file

Local LHN:
uSel:
type: orientation
values: [IN,OUT,UND,MUTUAL]

vSel:
type: orientation
values: [IN,OUT,UND,MUTUAL]

23.3.7 Most common neighbors

The most common neighbors algorithm just takes the number of common neighbors between the target and candidate
users as the recommendation score.

Reference: D. Liben-Nowell and J. Kleinberg. The link prediction problem for social networks. 12th International
Conference on Information and Knowledge Management (CIKM 2003), ACM, 556-559 (2003).

Parameters

• uSel: the neighborhood selection for the target user.

– IN: it considers the incoming neighborhood of the target user.

– OUT: it considers the outgoing neighborhood of the target user.

– UND: it considers the all the possible neighbors of the target users (Γ𝑜𝑢𝑡(𝑢) ∪ Γ𝑖𝑛(𝑢))

– MUTUAL: it considers as neighbors those who share a reciprocal link with the target user (Γ𝑜𝑢𝑡(𝑢)∩Γ𝑖𝑛(𝑢))

• vSel: the neighborhood selection for the candidate user.

– IN: it considers the incoming neighborhood of the candidate user.

– OUT: it considers the outgoing neighborhood of the candidate user.

– UND: it considers the all the possible neighbors of the candidate users (Γ𝑜𝑢𝑡(𝑣) ∪ Γ𝑖𝑛(𝑣))

– MUTUAL: it considers as neighbors those who share a reciprocal link with the candidate user (Γ𝑜𝑢𝑡(𝑣) ∩
Γ𝑖𝑛(𝑣))

Configuration file

MCN:
uSel:
type: orientation
values: [IN,OUT,UND,MUTUAL]

vSel:
type: orientation
values: [IN,OUT,UND,MUTUAL]
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23.3.8 Resource allocation

Based on the physical resource allocation process, this method finds the amount of a resource that would reach

Reference: L. Lü, T. Zhou, Y. Zhang. Predicting missing links via local information. European Physical Journal B 71,
623-630 (2009).

Parameters

• uSel: the neighborhood selection for the target user.

– IN: it considers the incoming neighborhood of the target user.

– OUT: it considers the outgoing neighborhood of the target user.

– UND: it considers the all the possible neighbors of the target users (Γ𝑜𝑢𝑡(𝑢) ∪ Γ𝑖𝑛(𝑢))

– MUTUAL: it considers as neighbors those who share a reciprocal link with the target user (Γ𝑜𝑢𝑡(𝑢)∩Γ𝑖𝑛(𝑢))

• vSel: the neighborhood selection for the candidate user.

– IN: it considers the incoming neighborhood of the candidate user.

– OUT: it considers the outgoing neighborhood of the candidate user.

– UND: it considers the all the possible neighbors of the candidate users (Γ𝑜𝑢𝑡(𝑣) ∪ Γ𝑖𝑛(𝑣))

– MUTUAL: it considers as neighbors those who share a reciprocal link with the candidate user (Γ𝑜𝑢𝑡(𝑣) ∩
Γ𝑖𝑛(𝑣))

• wSel: the neighborhood selection for the common neighbor.

– IN: it considers the incoming neighborhood of the common neighbor.

– OUT: it considers the outgoing neighborhood of the common neighbor.

– UND: it considers the all the possible neighbors of the common neighbors (Γ𝑜𝑢𝑡(𝑤) ∪ Γ𝑖𝑛(𝑤))

– MUTUAL: it considers as neighbors those who share a reciprocal link with the common neighbor (Γ𝑜𝑢𝑡(𝑤)∩
Γ𝑖𝑛(𝑤))

Configuration file

Resource allocation:
uSel:
type: orientation
values: [IN,OUT,UND,MUTUAL]

vSel:
type: orientation
values: [IN,OUT,UND,MUTUAL]

wSel:
type: orientation
values: [IN,OUT,UND,MUTUAL]
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23.3.9 Sørensen

This method is based on an statistic index for comparing how similar to samples are (here, how similar the neighbors
of two users are).

References:

• L. Lü, T. Zhou. Link Prediction in Complex Networks: A survey. Physica A: Statistical Mechanics and
its Applications, 390(6), 1150-1170 (2011).

• T. Sørensen. A method of establishing groups of equal amplitude in plant sociology based on similarity
of species content and its application to analyses of the vegetation on Danish commons. Biologiske
Skrifter 5(4), pp. 1-34 (1948)

Parameters

• uSel: the neighborhood selection for the target user.

– IN: it considers the incoming neighborhood of the target user.

– OUT: it considers the outgoing neighborhood of the target user.

– UND: it considers the all the possible neighbors of the target users (Γ𝑜𝑢𝑡(𝑢) ∪ Γ𝑖𝑛(𝑢))

– MUTUAL: it considers as neighbors those who share a reciprocal link with the target user (Γ𝑜𝑢𝑡(𝑢)∩Γ𝑖𝑛(𝑢))

• vSel: the neighborhood selection for the candidate user.

– IN: it considers the incoming neighborhood of the candidate user.

– OUT: it considers the outgoing neighborhood of the candidate user.

– UND: it considers the all the possible neighbors of the candidate users (Γ𝑜𝑢𝑡(𝑣) ∪ Γ𝑖𝑛(𝑣))

– MUTUAL: it considers as neighbors those who share a reciprocal link with the candidate user (Γ𝑜𝑢𝑡(𝑣) ∩
Γ𝑖𝑛(𝑣))

Configuration file

Sorensen:
uSel:
type: orientation
values: [IN,OUT,UND,MUTUAL]

vSel:
type: orientation
values: [IN,OUT,UND,MUTUAL]

23.4 Information retrieval

This group of approaches includes multiple implementations of information retrieval models, initially devised for
searching text documents in massive information spaces. All the algorithms included here are collaborative filter-
ing approaches (they do not use any feature information, just the connections in the network). Details about how these
models were adapted and their formulations for contact recommendation can be found in the following references:

References:
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• J. Sanz-Cruzado, P. Castells, C. Macdonald, I. Ounis. Effective Contact Recommendation in Social
Networks by Adaptation of Information Retrieval Models. Information Processing & Management
57(5) (2020).

• J. Sanz-Cruzado, C. Macdonald, I. Ounis, P. Castells. Axiomatic Analysis of Contact Recommendation
Methods in Social Networks: an IR perspective. 42th European Conference on Information Retrieval
(ECIR 2020), 175-90 (2020).

The IR models included in this framework are:

• Binary independent retrieval

• BM25

• DFRee

• DFReeKLIM

• DLH

• DPH

• Extreme BM25

• Pivoted normalization vector space model

• PL2

• Query likelihood

• Vector space model

23.4.1 Binary independent retrieval

Adaptation of the binary independent retrieval (BIR) model.

Reference: K. Sparck Jones, S. Walker, S.E. Robertson. A Probabilistic Model of Information Retrieval: Development
and Comparative Experiments. Information Processing and Management 36, 779-808 (part 1), 809-840 (part 2) (2000).

Parameters

• uSel: the neighborhood selection for the target user.

– IN: it considers the incoming neighborhood of the target user.

– OUT: it considers the outgoing neighborhood of the target user.

– UND: it considers the all the possible neighbors of the target users (Γ𝑜𝑢𝑡(𝑢) ∪ Γ𝑖𝑛(𝑢))

– MUTUAL: it considers as neighbors those who share a reciprocal link with the target user (Γ𝑜𝑢𝑡(𝑢)∩Γ𝑖𝑛(𝑢))

• vSel: the neighborhood selection for the candidate user.

– IN: it considers the incoming neighborhood of the candidate user.

– OUT: it considers the outgoing neighborhood of the candidate user.

– UND: it considers the all the possible neighbors of the candidate users (Γ𝑜𝑢𝑡(𝑣) ∪ Γ𝑖𝑛(𝑣))

– MUTUAL: it considers as neighbors those who share a reciprocal link with the candidate user (Γ𝑜𝑢𝑡(𝑣) ∩
Γ𝑖𝑛(𝑣))
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Configuration file

BIR:
uSel:
type: orientation
values: [IN,OUT,UND,MUTUAL]

vSel:
type: orientation
values: [IN,OUT,UND,MUTUAL]

23.4.2 BM25

Adaptation of the BM25 probabilistic information retrieval model.

References:

• K. Sparck Jones, S. Walker, S.E. Robertson. A Probabilistic Model of Information Retrieval: Develop-
ment and Comparative Experiments. Information Processing and Management 36, 779-808 (part 1),
809-840 (part 2) (2000).

• S.E. Robertson, H. Zaragoza. The Probabilistic Relevance Framework: BM25 and Beyond. Foundations
and Trends in Information Retrieval 3, 333–389 (2009).

Parameters

• uSel: the neighborhood selection for the target user.

– IN: it considers the incoming neighborhood of the target user.

– OUT: it considers the outgoing neighborhood of the target user.

– UND: it considers the all the possible neighbors of the target users (Γ𝑜𝑢𝑡(𝑢) ∪ Γ𝑖𝑛(𝑢))

– MUTUAL: it considers as neighbors those who share a reciprocal link with the target user (Γ𝑜𝑢𝑡(𝑢)∩Γ𝑖𝑛(𝑢))

• vSel: the neighborhood selection for the candidate user.

– IN: it considers the incoming neighborhood of the candidate user.

– OUT: it considers the outgoing neighborhood of the candidate user.

– UND: it considers the all the possible neighbors of the candidate users (Γ𝑜𝑢𝑡(𝑣) ∪ Γ𝑖𝑛(𝑣))

– MUTUAL: it considers as neighbors those who share a reciprocal link with the candidate user (Γ𝑜𝑢𝑡(𝑣) ∩
Γ𝑖𝑛(𝑣))

• dlSel: the neighborhood selection for computing the document length.

– IN: it considers the incoming neighborhood of the candidate user.

– OUT: it considers the outgoing neighborhood of the candidate user.

– UND: it considers the all the possible neighbors of the candidate users (Γ𝑜𝑢𝑡(𝑣) ∪ Γ𝑖𝑛(𝑣))

– MUTUAL: it considers as neighbors those who share a reciprocal link with the candidate user (Γ𝑜𝑢𝑡(𝑣) ∩
Γ𝑖𝑛(𝑣))

• b: parameter for tuning the effect of the neighborhood size. It takes values between 0 and 1.

• k: parameter for tuning the effect of the term frequency in the model. It takes positive values.

• weighted: (OPTIONAL) true to use the weights of the edges, false to consider them binary.
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Configuration file

BM25:
uSel:
type: orientation
values: [IN,OUT,UND,MUTUAL]

vSel:
type: orientation
values: [IN,OUT,UND,MUTUAL]

dlSel:
type: orientation
values: [IN,OUT,UND,MUTUAL]

b:
type: double
range:
- start: 0.1
end: 0.99
step: 0.1

k:
type: double
values: [0.01,0.1,1,10,100]

(weighted:
type: boolean
values: [true,false])

23.4.3 DFRee

Adaptation of a parameter-free divergence from randomness model using the average of tw information measures.

Reference: G. Amati, G. Amodeo, M. Bianchi, G. Marcone, F.U. Bordoni, C. Gaibisso, G. Gambosi, A. Celi, C.D.
Nicola, M. Flammini. FUB, IASI-CNR, UNIVAQ at TREC 2011 Microblog Track. 20th Text REtrieval Confer-ence
(TREC 2011) (2011).

Parameters

• uSel: the neighborhood selection for the target user.

– IN: it considers the incoming neighborhood of the target user.

– OUT: it considers the outgoing neighborhood of the target user.

– UND: it considers the all the possible neighbors of the target users (Γ𝑜𝑢𝑡(𝑢) ∪ Γ𝑖𝑛(𝑢))

– MUTUAL: it considers as neighbors those who share a reciprocal link with the target user (Γ𝑜𝑢𝑡(𝑢)∩Γ𝑖𝑛(𝑢))

• vSel: the neighborhood selection for the candidate user.

– IN: it considers the incoming neighborhood of the candidate user.

– OUT: it considers the outgoing neighborhood of the candidate user.

– UND: it considers the all the possible neighbors of the candidate users (Γ𝑜𝑢𝑡(𝑣) ∪ Γ𝑖𝑛(𝑣))

– MUTUAL: it considers as neighbors those who share a reciprocal link with the candidate user (Γ𝑜𝑢𝑡(𝑣) ∩
Γ𝑖𝑛(𝑣))

• weighted: (OPTIONAL) true to use the weights of the edges, false to consider them binary.
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Configuration file

DFRee:
uSel:
type: orientation
values: [IN,OUT,UND,MUTUAL]

vSel:
type: orientation
values: [IN,OUT,UND,MUTUAL]

(weighted:
type: boolean
values: [true,false])

23.4.4 DFReeKLIM

Adaptation of a parameter-free divergence from randomness model using the product of two Kullback-Leibler infor-
mation measures.

Reference: G. Amati, G. Amodeo, M. Bianchi, G. Marcone, F.U. Bordoni, C. Gaibisso, G. Gambosi, A. Celi, C.D.
Nicola, M. Flammini. FUB, IASI-CNR, UNIVAQ at TREC 2011 Microblog Track. 20th Text REtrieval Confer-ence
(TREC 2011) (2011).

Parameters

• uSel: the neighborhood selection for the target user.

– IN: it considers the incoming neighborhood of the target user.

– OUT: it considers the outgoing neighborhood of the target user.

– UND: it considers the all the possible neighbors of the target users (Γ𝑜𝑢𝑡(𝑢) ∪ Γ𝑖𝑛(𝑢))

– MUTUAL: it considers as neighbors those who share a reciprocal link with the target user (Γ𝑜𝑢𝑡(𝑢)∩Γ𝑖𝑛(𝑢))

• vSel: the neighborhood selection for the candidate user.

– IN: it considers the incoming neighborhood of the candidate user.

– OUT: it considers the outgoing neighborhood of the candidate user.

– UND: it considers the all the possible neighbors of the candidate users (Γ𝑜𝑢𝑡(𝑣) ∪ Γ𝑖𝑛(𝑣))

– MUTUAL: it considers as neighbors those who share a reciprocal link with the candidate user (Γ𝑜𝑢𝑡(𝑣) ∩
Γ𝑖𝑛(𝑣))

• weighted: (OPTIONAL) true to use the weights of the edges, false to consider them binary.
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Configuration file

DFReeKLIM:
uSel:
type: orientation
values: [IN,OUT,UND,MUTUAL]

vSel:
type: orientation
values: [IN,OUT,UND,MUTUAL]

(weighted:
type: boolean
values: [true,false])

23.4.5 DLH

Adaptation of a parameter-free divergence from randomness model which considers a hypergeometric distribution as
a divergence measure, and Laplace normalization.

Reference: G. Amati. Frequentist and Bayesian Approach to Information Retrieval. In: Proceedings of the 28th
European Conference on Information Retrieval (ECIR 2006), 13–24 (2006).

Parameters

• uSel: the neighborhood selection for the target user.

– IN: it considers the incoming neighborhood of the target user.

– OUT: it considers the outgoing neighborhood of the target user.

– UND: it considers the all the possible neighbors of the target users (Γ𝑜𝑢𝑡(𝑢) ∪ Γ𝑖𝑛(𝑢))

– MUTUAL: it considers as neighbors those who share a reciprocal link with the target user (Γ𝑜𝑢𝑡(𝑢)∩Γ𝑖𝑛(𝑢))

• vSel: the neighborhood selection for the candidate user.

– IN: it considers the incoming neighborhood of the candidate user.

– OUT: it considers the outgoing neighborhood of the candidate user.

– UND: it considers the all the possible neighbors of the candidate users (Γ𝑜𝑢𝑡(𝑣) ∪ Γ𝑖𝑛(𝑣))

– MUTUAL: it considers as neighbors those who share a reciprocal link with the candidate user (Γ𝑜𝑢𝑡(𝑣) ∩
Γ𝑖𝑛(𝑣))

• weighted: (OPTIONAL) true to use the weights of the edges, false to consider them binary.

Configuration file

DLH:
uSel:
type: orientation
values: [IN,OUT,UND,MUTUAL]

vSel:
type: orientation
values: [IN,OUT,UND,MUTUAL]

(continues on next page)
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(continued from previous page)

(weighted:
type: boolean
values: [true,false])

23.4.6 DPH

Adaptation of a parameter-free divergence from randomness model which considers a hypergeometric distribution as
a divergence measure, and Laplace normalization.

Reference: G. Amati, E. Ambrosi, M. Bianchi, C. Gaibisso, G. Gambosi: FUB, IASI-CNR and University of Tor
Vergata at TREC 2007 Blog Track. 16th Text REtrieval Conference (TREC 2007) (2007)

Parameters

• uSel: the neighborhood selection for the target user.

– IN: it considers the incoming neighborhood of the target user.

– OUT: it considers the outgoing neighborhood of the target user.

– UND: it considers the all the possible neighbors of the target users (Γ𝑜𝑢𝑡(𝑢) ∪ Γ𝑖𝑛(𝑢))

– MUTUAL: it considers as neighbors those who share a reciprocal link with the target user (Γ𝑜𝑢𝑡(𝑢)∩Γ𝑖𝑛(𝑢))

• vSel: the neighborhood selection for the candidate user.

– IN: it considers the incoming neighborhood of the candidate user.

– OUT: it considers the outgoing neighborhood of the candidate user.

– UND: it considers the all the possible neighbors of the candidate users (Γ𝑜𝑢𝑡(𝑣) ∪ Γ𝑖𝑛(𝑣))

– MUTUAL: it considers as neighbors those who share a reciprocal link with the candidate user (Γ𝑜𝑢𝑡(𝑣) ∩
Γ𝑖𝑛(𝑣))

• weighted: (OPTIONAL) true to use the weights of the edges, false to consider them binary.

Configuration file

DPH:
uSel:
type: orientation
values: [IN,OUT,UND,MUTUAL]

vSel:
type: orientation
values: [IN,OUT,UND,MUTUAL]

(weighted:
type: boolean
values: [true,false])
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23.4.7 Extreme BM25

A version of the BM25 algorithm, when parameter k tends to infinity.

References:

• J. Sanz-Cruzado, P. Castells, C. Macdonald, I. Ounis. Effective Contact Recommendation in Social
Networks by Adaptation of Information Retrieval Models. Information Processing & Management
57(5) (2020).

• J. Sanz-Cruzado, C. Macdonald, I. Ounis, P. Castells. Axiomatic Analysis of Contact Recommendation
Methods in Social Networks: an IR perspective. 42th European Conference on Information Retrieval
(ECIR 2020), 175-90 (2020).

Parameters

• uSel: the neighborhood selection for the target user.

– IN: it considers the incoming neighborhood of the target user.

– OUT: it considers the outgoing neighborhood of the target user.

– UND: it considers the all the possible neighbors of the target users (Γ𝑜𝑢𝑡(𝑢) ∪ Γ𝑖𝑛(𝑢))

– MUTUAL: it considers as neighbors those who share a reciprocal link with the target user (Γ𝑜𝑢𝑡(𝑢)∩Γ𝑖𝑛(𝑢))

• vSel: the neighborhood selection for the candidate user.

– IN: it considers the incoming neighborhood of the candidate user.

– OUT: it considers the outgoing neighborhood of the candidate user.

– UND: it considers the all the possible neighbors of the candidate users (Γ𝑜𝑢𝑡(𝑣) ∪ Γ𝑖𝑛(𝑣))

– MUTUAL: it considers as neighbors those who share a reciprocal link with the candidate user (Γ𝑜𝑢𝑡(𝑣) ∩
Γ𝑖𝑛(𝑣))

• dlSel: the neighborhood selection for computing the document length.

– IN: it considers the incoming neighborhood of the candidate user.

– OUT: it considers the outgoing neighborhood of the candidate user.

– UND: it considers the all the possible neighbors of the candidate users (Γ𝑜𝑢𝑡(𝑣) ∪ Γ𝑖𝑛(𝑣))

– MUTUAL: it considers as neighbors those who share a reciprocal link with the candidate user (Γ𝑜𝑢𝑡(𝑣) ∩
Γ𝑖𝑛(𝑣))

• b: parameter for tuning the effect of the neighborhood size. It takes values between 0 and 1.

• weighted: (OPTIONAL) true to use the weights of the edges, false to consider them binary.

Configuration file

EBM25:
uSel:
type: orientation
values: [IN,OUT,UND,MUTUAL]

vSel:
type: orientation
values: [IN,OUT,UND,MUTUAL]

(continues on next page)
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dlSel:
type: orientation
values: [IN,OUT,UND,MUTUAL]

b:
type: double
range:
- start: 0.1
end: 0.99
step: 0.1

k:
type: double
values: [0.01,0.1,1,10,100]

(weighted:
type: boolean
values: [true,false])

23.4.8 Pivoted normalization vector space model

Adaptation of the vector space model information retrieval model with pivoted normalization.

Reference: A. Singhal, J. Choi, D. Hindle, D.D. Lewis, F.C.N. Pereira: AT and T at TREC-7. 7th Text Retrieval
Conference (TREC 1998), 186-198 (1998)

Parameters

• uSel: the neighborhood selection for the target user.

– IN: it considers the incoming neighborhood of the target user.

– OUT: it considers the outgoing neighborhood of the target user.

– UND: it considers the all the possible neighbors of the target users (Γ𝑜𝑢𝑡(𝑢) ∪ Γ𝑖𝑛(𝑢))

– MUTUAL: it considers as neighbors those who share a reciprocal link with the target user (Γ𝑜𝑢𝑡(𝑢)∩Γ𝑖𝑛(𝑢))

• vSel: the neighborhood selection for the candidate user.

– IN: it considers the incoming neighborhood of the candidate user.

– OUT: it considers the outgoing neighborhood of the candidate user.

– UND: it considers the all the possible neighbors of the candidate users (Γ𝑜𝑢𝑡(𝑣) ∪ Γ𝑖𝑛(𝑣))

– MUTUAL: it considers as neighbors those who share a reciprocal link with the candidate user (Γ𝑜𝑢𝑡(𝑣) ∩
Γ𝑖𝑛(𝑣))

• s: parameter for tuning the importance of the candidate user length.

• weighted: (OPTIONAL) true to use the weights of the edges, false to consider them binary.
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Configuration file

Pivoted normalization VSM:
uSel:
type: orientation
values: [IN,OUT,UND,MUTUAL]

vSel:
type: orientation
values: [IN,OUT,UND,MUTUAL]

s:
type: double
values: [0.01,0.1,1,10,100]

(weighted:
type: boolean
values: [true,false])

23.4.9 PL2

Adaptation of a divergence from randomness model, where the distribution of terms in the document and the collection
is measured using a Poisson distribution, a Laplace aftereffect estimation is used as a first normalization, and, term
frequency is normalized using Normalisation 2.

References:

• G. Amati, C.J. Van Rijsbergen. Probabilistic Models of Information Retrieval Based on Measuring the
Divergence from Randomness. ACM Transactions on Information Systems 20(4), 357–389 (2002).

• G. Amati. Probability Information Models for Retrieval based on Divergence from Randomness. Ph.D.
thesis. University of Glasgow. (2003).

Parameters

• uSel: the neighborhood selection for the target user.

– IN: it considers the incoming neighborhood of the target user.

– OUT: it considers the outgoing neighborhood of the target user.

– UND: it considers the all the possible neighbors of the target users (Γ𝑜𝑢𝑡(𝑢) ∪ Γ𝑖𝑛(𝑢))

– MUTUAL: it considers as neighbors those who share a reciprocal link with the target user (Γ𝑜𝑢𝑡(𝑢)∩Γ𝑖𝑛(𝑢))

• vSel: the neighborhood selection for the candidate user.

– IN: it considers the incoming neighborhood of the candidate user.

– OUT: it considers the outgoing neighborhood of the candidate user.

– UND: it considers the all the possible neighbors of the candidate users (Γ𝑜𝑢𝑡(𝑣) ∪ Γ𝑖𝑛(𝑣))

– MUTUAL: it considers as neighbors those who share a reciprocal link with the candidate user (Γ𝑜𝑢𝑡(𝑣) ∩
Γ𝑖𝑛(𝑣))

• c: parameter for tuning the importance of the candidate user length.

• weighted: (OPTIONAL) true to use the weights of the edges, false to consider them binary.
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Configuration file

PL2:
uSel:
type: orientation
values: [IN,OUT,UND,MUTUAL]

vSel:
type: orientation
values: [IN,OUT,UND,MUTUAL]

c:
type: double
values: [0.01,0.1,1,10,100]

(weighted:
type: boolean
values: [true,false])

23.4.10 Query likelihood

Adaptation of a language model algorithm known as query likelihood. We differentiate three variants, depending on
the applied smoothing:

• Dirichlet smoothing (QLD)

• Jelinek-Mercer smoothing (QLJM)

• Laplace additive smoothing (QLL)

References: J.M. Ponte, W.B. Croft. A language modeling approach to information retrieval. 21st Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 1998), 275-281 (1998)

Parameters

The general parameters are the following:

• uSel: the neighborhood selection for the target user.

– IN: it considers the incoming neighborhood of the target user.

– OUT: it considers the outgoing neighborhood of the target user.

– UND: it considers the all the possible neighbors of the target users (Γ𝑜𝑢𝑡(𝑢) ∪ Γ𝑖𝑛(𝑢))

– MUTUAL: it considers as neighbors those who share a reciprocal link with the target user (Γ𝑜𝑢𝑡(𝑢)∩Γ𝑖𝑛(𝑢))

• vSel: the neighborhood selection for the candidate user.

– IN: it considers the incoming neighborhood of the candidate user.

– OUT: it considers the outgoing neighborhood of the candidate user.

– UND: it considers the all the possible neighbors of the candidate users (Γ𝑜𝑢𝑡(𝑣) ∪ Γ𝑖𝑛(𝑣))

– MUTUAL: it considers as neighbors those who share a reciprocal link with the candidate user (Γ𝑜𝑢𝑡(𝑣) ∩
Γ𝑖𝑛(𝑣))

• weighted: (OPTIONAL) true to use the weights of the edges, false to consider them binary.

Then, each variant has its own parameters. For the QLD version:
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• mu: parameter controlling the trade-off between the regularization term and the original term. It takes values
greater than 0.

for the QLJM version:

• lambda: parameter controlling the trade-off between the regularization term and the original term. It takes values
between 0 and 1.

and, for the QLL version:

• phi: parameter controlling the trade-off between the regularization term and the original term. It takes values
greater than 0.

Configuration file

The configuration file for the query likelihood algorithm with Dirichlet smoothing is:

QLD:
uSel:
type: orientation
values: [IN,OUT,UND,MUTUAL]

vSel:
type: orientation
values: [IN,OUT,UND,MUTUAL]

mu:
type: double
values: [0.01,0.1,1,10,100]

(weighted:
type: boolean
values: [true,false])

The configuration file for the query likelihood model with Jelinek-Mercer smoothing is:

QLJM:
uSel:
type: orientation
values: [IN,OUT,UND,MUTUAL]

vSel:
type: orientation
values: [IN,OUT,UND,MUTUAL]

lambda:
type: double
range:
- start: 0.1
end: 0.99
step: 0.1

(weighted:
type: boolean
values: [true,false])

And, finally, for the query likelihood model with Laplace smoothing:

QLL:
uSel:
type: orientation

(continues on next page)
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values: [IN,OUT,UND,MUTUAL]
vSel:
type: orientation
values: [IN,OUT,UND,MUTUAL]

phi:
type: double
values: [0.01,0.1,1,10,100]

(weighted:
type: boolean
values: [true,false])

23.4.11 Vector space model

Adaptation of the original vector space model in information retrieval.

Reference: G. Salton, A. Wong, C.S. Yang. A vector space for automatic indexing. Communications of the ACM
18(11), 613-620 (1975).

Parameters

• uSel: the neighborhood selection for the target user.

– IN: it considers the incoming neighborhood of the target user.

– OUT: it considers the outgoing neighborhood of the target user.

– UND: it considers the all the possible neighbors of the target users (Γ𝑜𝑢𝑡(𝑢) ∪ Γ𝑖𝑛(𝑢))

– MUTUAL: it considers as neighbors those who share a reciprocal link with the target user (Γ𝑜𝑢𝑡(𝑢)∩Γ𝑖𝑛(𝑢))

• vSel: the neighborhood selection for the candidate user.

– IN: it considers the incoming neighborhood of the candidate user.

– OUT: it considers the outgoing neighborhood of the candidate user.

– UND: it considers the all the possible neighbors of the candidate users (Γ𝑜𝑢𝑡(𝑣) ∪ Γ𝑖𝑛(𝑣))

– MUTUAL: it considers as neighbors those who share a reciprocal link with the candidate user (Γ𝑜𝑢𝑡(𝑣) ∩
Γ𝑖𝑛(𝑣))

• weighted: (OPTIONAL) true to use the weights of the edges, false to consider them binary.

Configuration file

VSM:
uSel:
type: orientation
values: [IN,OUT,UND,MUTUAL]

vSel:
type: orientation
values: [IN,OUT,UND,MUTUAL]

(weighted:
type: boolean
values: [true,false])
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23.5 Matrix factorization

Matrix factorization approaches consider that the adjacency matrix of the social network can be factorized in a group
of two or three matrices of smaller dimension. We include the following approaches:

• Implicit matrix factorization

• Fast implicit matrix factorization

23.5.1 Implicit matrix factorization

Matrix factorization algorithm designed to deal with implicit feedback data in recommender systems.

Reference: Y. Hu, Y. Koren, C. Volinsky. Collaborative filtering for implicit feedback datasets, International Confer-
ence on Data Mining (ICDM 2008) (2008).

Parameters

• lambda: regulates the importance of the error and the norm of the latent vectors.

• alpha: weights the confidence on the weight of the edges.

• k: the number of latent factors for each user.

• weighted: (OPTIONAL) true to use the weights of the edges, false to consider them binary.

Configuration file

iMF:
lambda:
type: double
values: [0.1,1,10,100,150]

alpha:
type: double
values: [1,10,40,100]

k:
type: int
range:
- start: 10
end: 300
step: 10

(weighted:
type: boolean
values: [true,false])
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23.5.2 Fast implicit matrix factorization

Fast matrix factorization algorithm designed to deal with implicit feedback data in recommender systems.

Reference: I. Pilászy, D. Zibriczky and D. Tikk. Fast ALS-based Matrix Factorization for Explicit and Implicit Feed-
back Datasets. 4th ACM Conference on Recommender Systems (RecSys 2010),71–78 (2010).

Parameters

• lambda: regulates the importance of the error and the norm of the latent vectors.

• alpha: weights the confidence on the weight of the edges.

• k: the number of latent factors for each user.

• weighted: (OPTIONAL) true to use the weights of the edges, false to consider them binary.

Configuration file

Fast iMF:
lambda:
type: double
values: [0.1,1,10,100,150]

alpha:
type: double
values: [1,10,40,100]

k:
type: int
range:
- start: 10
end: 300
step: 10

(weighted:
type: boolean
values: [true,false])

23.6 Nearest neighbors algorithms

Nearest neighbors recommendation algorithms select the users in the network that better represent either the target or
the candidate users. We include the following collaborative filtering variants of these algorithms:

• User-based kNN

• Item-based kNN

• Similarities
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23.6.1 User-based kNN

The user-based kNN algorithm chooses the most similar users to the target user of the recommendation.

Reference: X. Ning, C. Desrosiers, G. Karypis. A Comprehensive Survey of Neighborhood-Based Recommendation
Methods. Recommender Systems Handbook, 2nd. Ed., 37-76 (2015).

Parameters

• k: the maximum number of neighbors to choose.

• similarity: the method to choose (see Similarities)

• q: the exponent of the similarity.

• weighted: (OPTIONAL) true to use the weights of the edges, false to consider them binary.

Configuration file

UB kNN:
k:
type: int
range:
- start: 10
end: 300
step: 10

q:
type: int
values: 1

similarity:
type: object
objects:
similarity_name1:
similarity_param1:
<...>

(weighted:
type: boolean
values: [true,false])

23.6.2 Item-based kNN

The item-based kNN algorithm chooses the most similar users to the candidate user of the recommendation.

Reference: X. Ning, C. Desrosiers, G. Karypis. A Comprehensive Survey of Neighborhood-Based Recommendation
Methods. Recommender Systems Handbook, 2nd. Ed., 37-76 (2015).
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Parameters

• k: the maximum number of neighbors to choose.

• similarity: the method to choose (see Similarities)

• q: the exponent of the similarity.

• weighted: (OPTIONAL) true to use the weights of the edges, false to consider them binary.

Configuration file

IB kNN:
k:
type: int
range:
- start: 10
end: 300
step: 10

q:
type: int
values: 1

similarity:
type: object
objects:
similarity_name1:
similarity_param1:
<...>

(weighted:
type: boolean
values: [true,false])

23.6.3 Similarities

The set of all the similarities which can be applied for kNN is large. This number even grows in contact recommendation
in social networks, as we can use any possible standalone algorithm as a neighborhood selection method. We allow
this in our experiments: any people recommendation algorithm can be selected. The specific grid for these similarities
is the same as in the original method.

23.7 Path-based algorithms

These algorithms consider the paths between different nodes in the network to find the recommendation scores. The
framework contains the following algorithms within this family.

• Global Leicht-Holme-Newman index

• Katz

• Local path index

• Matrix forest

• Pseudo inverse cosine
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• Shortest path distance

23.7.1 Global Leicht-Holme-Newman index

This algorithm considers that two users are similar if their immediate neighbors in the network are themselves similar.

Reference: E.A. Leicht, P. Holme, M.E.J. Newman. Vertex Similarity in Networks. Physical Review E 73(2): 026120
(2006).

Parameters

• phi: decay factor for the similarity as we use longer paths between the users.

• orientation: the method to choose the adjacency matrix. This parameter does not influence in undirected
networks.

– IN: coordinate 𝐴𝑖𝑗 shows the weight of the (𝑗, 𝑖) edge.

– OUT: coordinate 𝐴𝑖𝑗 shows the weight of the (𝑖, 𝑗) edge.

– UND: coordinate 𝐴𝑖𝑗 shows the sum of the weights of the (𝑖, 𝑗) and (𝑗, 𝑖) edges.

– MUTUAL: coordinate 𝐴𝑖𝑗 shows the sum of the weights of the (𝑖, 𝑗) and (𝑗, 𝑖) edges (but only if both exist).

• q: the exponent of the similarity.

Configuration file

Global LHN:
phi:
type: double
values: [0.01,0.1,1,10,100]

orientation:
type: orientation
values: [IN,OUT,UND,MUTUAL]

23.7.2 Katz

This algorithm weights the possible paths between the target and candidate users, giving more weight to those at closer
distances.

References:

• L. Katz. A new status index derived from sociometric analysis. Psychometrika 18(1), 39-43 (1953)

• D. Liben-Nowell, D., J. Kleinberg. The Link Prediction Problem for Social Networks. Journal of the
American Society for Information Science and Technology 58(7) (2007)
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Parameters

• b: decay factor for the greater distance paths.

• orientation: the method to choose the adjacency matrix. This parameter does not influence in undirected
networks.

– IN: coordinate 𝐴𝑖𝑗 shows the weight of the (𝑗, 𝑖) edge.

– OUT: coordinate 𝐴𝑖𝑗 shows the weight of the (𝑖, 𝑗) edge.

– UND: coordinate 𝐴𝑖𝑗 shows the sum of the weights of the (𝑖, 𝑗) and (𝑗, 𝑖) edges.

– MUTUAL: coordinate 𝐴𝑖𝑗 shows the sum of the weights of the (𝑖, 𝑗) and (𝑗, 𝑖) edges (but only if both exist).

Configuration file

Katz:
b:
type: double
values: [0.01,0.1,1,10,100]

orientation:
type: orientation
values: [IN,OUT,UND,MUTUAL]

23.7.3 Local path index

This algorithm weights the possible paths between the target and candidate users, giving more weight to those at closer
distances.

References:

• L. Lü, C. Jin, T. Zhou. Similarity Index Based on Local Paths for Link Prediction of Complex Networks.
Physical Review E 80(4): 046122 (2009)

• L. Lü, T. Zhou. Link Prediction in Complex Networks: A survey. Physica A 390(6), 1150-1170 (2011)

Parameters

• b: decay factor for the greater distance paths.

• k: the maximum distance between the target and candidate users (greater or equal than 3).

• orientation: the method to choose the adjacency matrix. This parameter does not influence in undirected
networks.

– IN: coordinate 𝐴𝑖𝑗 shows the weight of the (𝑗, 𝑖) edge.

– OUT: coordinate 𝐴𝑖𝑗 shows the weight of the (𝑖, 𝑗) edge.

– UND: coordinate 𝐴𝑖𝑗 shows the sum of the weights of the (𝑖, 𝑗) and (𝑗, 𝑖) edges.

– MUTUAL: coordinate 𝐴𝑖𝑗 shows the sum of the weights of the (𝑖, 𝑗) and (𝑗, 𝑖) edges (but only if both exist).
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Configuration file

Local path index:
b:
type: double
values: [0.01,0.1,1,10,100]

k:
type: int
values: [3,4,5,6]

orientation:
type: orientation
values: [IN,OUT,UND,MUTUAL]

23.7.4 Matrix forest

This algorithm takes as score the ratio of the number of spanning divergent forests such that the target and candidate
belong to the same tree, rooted in the target user.

References:

• L. Lü, T. Zhou. Link Prediction in Complex Networks: A survey. Physica A 390(6), 1150-1170 (2011)

Parameters

• alpha: importance of the Laplacian matrix.

• orientation: the method to choose the adjacency matrix. This parameter does not influence in undirected
networks.

– IN: coordinate 𝐴𝑖𝑗 shows the weight of the (𝑗, 𝑖) edge.

– OUT: coordinate 𝐴𝑖𝑗 shows the weight of the (𝑖, 𝑗) edge.

– UND: coordinate 𝐴𝑖𝑗 shows the sum of the weights of the (𝑖, 𝑗) and (𝑗, 𝑖) edges.

– MUTUAL: coordinate 𝐴𝑖𝑗 shows the sum of the weights of the (𝑖, 𝑗) and (𝑗, 𝑖) edges (but only if both exist).

Configuration file

Matrix forest:
alpha:
type: double
values: [0.01,0.1,1,10,100]

orientation:
type: orientation
values: [IN,OUT,UND,MUTUAL]
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23.7.5 Pseudo inverse cosine

This algorithm represents each user by the u-th row of the pseudo-inverse of the Laplacian matrix of the network. Then,
the score is just the cosine similarity between these two vectors.

References:

• F. Fouss, A. Pirotte, J-M. Renders, M. Saerens. Random-walk computation of similarities between nodes
of a graph with application to collaborative recommendation. IEEE TKDE 19(3), pp. 355-369 (2007).

Parameters

• orientation: the method to choose the adjacency matrix. This parameter does not influence in undirected
networks.

– IN: coordinate 𝐴𝑖𝑗 shows the weight of the (𝑗, 𝑖) edge.

– OUT: coordinate 𝐴𝑖𝑗 shows the weight of the (𝑖, 𝑗) edge.

– UND: coordinate 𝐴𝑖𝑗 shows the sum of the weights of the (𝑖, 𝑗) and (𝑗, 𝑖) edges.

– MUTUAL: coordinate 𝐴𝑖𝑗 shows the sum of the weights of the (𝑖, 𝑗) and (𝑗, 𝑖) edges (but only if both exist).

Configuration file

Pseudo-inverse cosine:
alpha:
type: double
values: [0.01,0.1,1,10,100]

orientation:
type: orientation
values: [IN,OUT,UND,MUTUAL]

23.7.6 Shortest path distance

The shortest path distance recommends people in the network who are close to the target user (the closest, the highest
the score shall be)-

Reference: D. Liben-Nowell and J. Kleinberg. The link prediction problem for social networks. 12th International
Conference on Information and Knowledge Management (CIKM 2003), ACM, 556-559 (2003).

Parameters

• orientation: the orientation to choose for the edges.

– IN: it considers the distance between the candidate user and the target user.

– OUT: it considers the distance between the target and the candidate user.

– UND: it considers the distance between the target and candidate users if the network was undirected.

– MUTUAL: in this case, we consider just the most natural distance (the OUT case).
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Configuration file

Distance:
orientation:
type: orientation
values: [IN,OUT,UND]

23.8 Random walks

These algorithms consider the properties of random walks to determine the recommendation score. We include the
following approaches:

• Commute time

• Hitting time

• HITS

• PageRank

• Personalized PageRank

• Personalized HITS

• Personalized SALSA

• PropFlow

• SALSA

23.8.1 Commute time

Average time that a random walker needs to go from the target to the origin user and come back. We consider two
variants, depending on the underlying random walk algorithm:

• PageRank

• Personalized PageRank

Reference: D. Liben-Nowell, D., J. Kleinberg. The Link Prediction Problem for Social Networks. Journal of the
American Society for Information Science and Technology 58(7) (2007).

Parameters

• r: the PageRank teleport rate.
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Configuration file

The non-personalized PageRank version is selected as:

Commute time PageRank:
r:
type: double
range:
- start: 0.1
end: 0.99
step: 0.1

and the personalized one as:

Commute time personalized PageRank:
r:
type: double
range:
- start: 0.1
end: 0.99
step: 0.1

23.8.2 Hitting time

Average time that a random walker needs to go from the target to the candidate user. We consider two variants, de-
pending on the underlying random walk algorithm:

• PageRank

• Personalized PageRank

Reference: D. Liben-Nowell, D., J. Kleinberg. The Link Prediction Problem for Social Networks. Journal of the
American Society for Information Science and Technology 58(7) (2007).

Parameters

• r: the PageRank teleport rate.

Configuration file

The non-personalized PageRank version is selected as:

Hitting time PageRank:
r:
type: double
range:
- start: 0.1
end: 0.99
step: 0.1

and the personalized one as:
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Hitting time personalized PageRank:
r:
type: double
range:
- start: 0.1
end: 0.99
step: 0.1

23.8.3 HITS

Algorithm based on the Hyperlink-Induced Topic Search algorithm.

Reference: J.M. Kleinberg. Authoritative Sources in a Hyperlinked Environment. Journal of the ACM 46(5), 604-642
(1999).

Parameters

• mode: true if we want to use the authorities scores, false if we want to use the hubs scores.

Configuration file

HITS:
mode:
type: boolean
values: [true,false]

23.8.4 PageRank

This algorithm takes the non-personalized PageRank algorithm (initially designed for estimating the importance of web
pages) as a recommendation / prediction method.

Reference: S. Brin, L. Page. The Anatomy of a Large-Scale Hypertextual Web Search Engine. 7th Annual Interna-
tional Conference on World Wide Web (WWW 1998), 107-117 (1998).

Parameters

• r: teleport rate of the random walk.

Configuration file

PageRank:
r:
type: double
range:
- start: 0.1
end: 0.99
step: 0.1
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23.8.5 Personalized HITS

Personalized version of the HITS algorithm, where a teleport probability to the target user of the recommendation has
been added.

Reference: A. Goel. The Who-To-Follow System at Twitter: Algorithms, Impact and Further Research. 32rd Annual
International Conference on World Wide Web (2014), industry track (2014)

Parameters

• mode: true if we want to use the authorities scores, false if we want to use the hubs scores.

• alpha: teleport rate.

Configuration file

Personalized HITS:
alpha:
type: double
range:
- start: 0.1
end: 0.99
step: 0.1

mode:
type: boolean
values: [true, false]

23.8.6 Personalized PageRank

Personalized version of the PageRank algorithm, where the random walk always teleports to the target user. Also known
as rooted PageRank.

Reference: S. White, P. Smyth. Algorithms for Estimating Relative Importance in Networks. 9th Annual ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2003).

Parameters

• r: teleport rate of the random walk.

Configuration file

Personalized PageRank:
r:
type: double
range:
- start: 0.1
end: 0.99
step: 0.1
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23.8.7 Personalized SALSA

Personalized version of the SALSA algorithm, where a teleport probability to the target user of the recommendation
has been added.

Reference: A. Goel, P. Gupta, J. Sirois, D. Wang, A. Sharma, S. Gurumurthy. The who-to-follow system at Twitter:
Strategy, algorithms and revenue impact. Interfaces 45(1), 98-107 (2015)

Parameters

• mode: true if we want to use the authorities scores, false if we want to use the hubs scores.

• alpha: teleport rate.

Configuration file

Personalized SALSA:
alpha:
type: double
range:
- start: 0.1
end: 0.99
step: 0.1

mode:
type: boolean
values: [true, false]

23.8.8 PropFlow

This algorithm considers the probability that a random walker starting in the target user reaches the candidate user in
less than few steps, using the edge weights as transition probabilities.

Reference: R. Lichtenwalter, J. Lussier, N. Chawla. New perspectives and methods in link prediction. 16th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2010), 243-252 (2010).

Parameters

• maxLength: importance of the Laplacian matrix.

• orientation: the method to choose the orientation of the paths.

– IN: the walker advances through incoming edges.

– OUT: the walker advances through outgoing edges.

– UND: the walker advances through any edge.

– MUTUAL: the walker advances through reciprocal edges.

• weighted: (OPTIONAL) true to use the weights of the edges, false to consider them binary.
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Configuration file

PropFlow:
maxLength:
type: int
values: [3,4,5,6]

orientation:
type: orientation
values: [IN,OUT,UND,MUTUAL]

(weighted:
type: boolean
values: [true,false])

23.8.9 SALSA

Adaptation of the Stochastic Approach for Link-Structure Analysis (SALSA) algorithm.

Reference: R. Lempel, S. Moran. SALSA: The Stochastic Approach for Link-Structure Analysis. ACM TOIS 19(2),
131-160 (2001)

Parameters

• mode: true if we want to use the authorities scores, false if we want to use the hubs scores.

Configuration file

SALSA:
mode:
type: boolean
values: [true,false]

23.9 Twitter

These algorithms have been reported to be used at some point (at least, in experiments) for the Twitter Who-to-follow
service.

• Closure

• Cosine similarity

• Love

• Money
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23.9.1 Closure

Algorithm that recommends reciprocal edges according to the number of common neighbors between the already
existing edge endpoints.

• PageRank

• Personalized PageRank

Reference: P. Gupta, A. Goel, J. Lin, A. Sharma, D. Wang, R. Zadeh. WTF: The Who to Follow Service at Twitter.
22nd Annual International Conference on World Wide Web (WWW 2013), 505-514 (2013).

Configuration file

The non-personalized PageRank version is selected as:

Closure:

23.9.2 Cosine similarity

This considers several variants of the cosine similarity in the experiments: we consider three:

• Average cosine similarity: it takes the average similarity of the candidate user with the authorities the target user
is currently following.

• Centroid cosine similarity: for each user, a centroid is built, using the vectors of the followed users. The score is
the cosine of two vectors.

• Maximum cosine similarity: it takes the maximum similarity between the authorities that the target user is cur-
rently following.

Parameters

• r: the PageRank teleport rate, for computing the circles of trust.

• circlesize: the size of the circles of trust. If negative or zero, we take the maximum possible size.

Configuration file

The Yaml code for the average cosine algorithm is:

Average cosine:
r:
type: double
range:
- start: 0.1
end: 0.99
step: 0.1

circlesize:
type: int
values: [0,10,100,1000]

for the centroid cosine similarity variant, it is:
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Centroid cosine:
r:
type: double
range:
- start: 0.1
end: 0.99
step: 0.1

circlesize:
type: int
values: [0,10,100,1000]

and, for the maximum cosine similarity:

Maximum cosine:
r:
type: double
range:
- start: 0.1
end: 0.99
step: 0.1

circlesize:
type: int
values: [0,10,100,1000]

23.9.3 Love

Variant of the personalized HITS algorithm, computed over a circle of trust.

Reference: A. Goel. The Who-To-Follow System at Twitter: Algorithms, Impact and Further Research. 32rd Annual
International Conference on World Wide Web (2014), industry track (2014).

Parameters

• mode: true if we want to use the authorities scores, false if we want to use the hubs scores.

• alpha: teleport rate for the personalized HITS algorithm.

• r: the PageRank teleport rate, for computing the circles of trust.

Configuration file

Love:
mode:
type: boolean
values: [true,false]

r:
type: double
range:
- start: 0.1
end: 0.99
step: 0.1

(continues on next page)
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(continued from previous page)

alpha:
type: double
range:
- start: 0.1
end: 0.99
step: 0.1

23.9.4 Money

Variant of the personalized SALSA algorithm, computed over a circle of trust.

Reference: A. Goel, P. Gupta, J. Sirois, D. Wang, A. Sharma, S. Gurumurthy. The who-to-follow system at Twitter:
Strategy, algorithms and revenue impact. Interfaces 45(1), 98-107 (2015).

Parameters

• mode: true if we want to use the authorities scores, false if we want to use the hubs scores.

• alpha: teleport rate for the personalized HITS algorithm.

• r: the PageRank teleport rate, for computing the circles of trust.

Configuration file

Money:
mode:
type: boolean
values: [true,false]

r:
type: double
range:
- start: 0.1
end: 0.99
step: 0.1

alpha:
type: double
range:
- start: 0.1
end: 0.99
step: 0.1
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23.10 Supervised algorithms

In addition to the rest of algorithms included in the comparative, we include some supervised algorithms (either clas-
sification approaches or learning to rank algorithms). All these methods receive, as input, two sets of feature vectors: a
set of feature vectors for training the machine learning approaches, and a set of feature vectors to compute the definitive
scores. We provide information on how to find such feature vectors in SEE HOW TO REFER TO THIS.

We add the following algorithms:

• LambdaMART

• Weka classifiers

23.10.1 LambdaMART

LambdaMART represents a learning to rank algorithm based on gradient boosted regression trees, with a great success
on information retrieval.

Reference: Y. Ganjisaffar, R. Caruana, C. Lopes. Bagging Gradient-Boosted Trees for High Precision, Low Variance
Ranking Models. 34th Annual International ACM SIGIR conference on Research and development in Information
Retrieval (SIGIR 2011), 85-94 (2011).

Parameters

• train: the file containing the training vectors for the training set.

• valid: the file containing the validation vectors for training the algorithm.

• test : the file containing the definitive feature vectors.

• config : route of the configuration file for the JForests LambdaMART (see https://github.com/yasserg/jforests)

• tmp: route to a temporary folder.

Configuration file

The non-personalized PageRank version is selected as:

LambdaMART:
train:
type: string
values: [file1,...,fileN]

valid:
type: string
values: [file1,...,fileN]

test:
type: string
values: [file1,...,fileN]

config:
type: string
values: [file1,...,fileN]

tmp:
type: string
values: [dir1,...,dirN]
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23.10.2 Weka classifiers

As classifiers, we have integrated in our code the use of classifiers from Weka. We can only access some of them in
the original program, but all of them can be used if the MachineLearningWekaRecommender is used from code.

Reference: E. Frank, M. A. Hall, and I. H. Witten. The WEKA Workbench. Online Appendix for “Data Mining:
Practical Machine Learning Tools and Techniques”, 4th edition (2016).

Parameters

• train: the file containing the training vectors for the training set.

• test : the file containing the definitive feature vectors.

• classifier : classifier configurations.

Classifiers

From the recommendation program, we allow the use of three different classifiers: logistic regression, naive Bayes, and
random forests. The first two do not have any additional parameters. The random forests adds the number of decision
stumps.

Configuration file

We configure these approaches as:

Weka:
train:
type: string
values: [file1,...,fileN]

test:
type: string
values: [file1,...,fileN]

classifier:
type: object
objects:
logistic:
naive-bayes:
random-forest:
iterations:
type: int
values: [5,10,15,20,25]

162 Chapter 23. Link prediction/recommendation algorithms summary



CHAPTER

TWENTYFOUR

LINK PREDICTION/RECOMMENDATION METRICS SUMMARY

In order to determine the effectiveness of our algorithms, it is necessary to evaluate them. For this, we provide a series
of metrics: RELISON provides implementations of several metric types:

24.1 Accuracy metrics

In order to determine how good people recommendation algorithms are, it is common to evaluate them using ranking
metrics. This framework allows the use of the following ones (although more of them can be defined, using the metric
interfaces provided by the RankSys framework (https://ranksys.github.io)):

• Average precision

• nDCG

• Precision

• Recall

24.1.1 Average precision

This ranking metric gives more importance to the correctly recommended users at the top of the ranking. It just
represents the area under the precision-recall curve: a plot of the precision of a recomendation as a function of the
recall. It is defined as:

AP(𝑢) =

∑︀|𝑅𝑢|
𝑘=1 𝑃@𝑘(𝑢) · 1relevant(𝑢)(𝑣𝑘)

|relevant(𝑢)

where |𝑅𝑢| represents the length of the recommendation ranking for user𝑢,𝑃@𝑘 represents the precision at cutoff 𝑘 (see
Precision), relevant(𝑢) is the set of links which have 𝑢 as origin in the evaluation set, and 𝑣𝑘 is the 𝑘-th recommended
user in the ranking.

When it is averaged over the different users in the network, this metric receives the mean average precision (MAP)
name.
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Parameters

• cutoff: the (maximum) number of recommended users to consider in the computation of the metric.

Configuration file

MAP:
cutoff:
type: int
values: [1,5,10]

24.1.2 nDCG

The cumulative discounted cumulative gain is a metric that considers that a recommendation is better if the relevant
links appear at the top of the ranking. For this, it appears a discount term that depends on the position of the user. It
also allows considering several degrees of relevance for the recommended links (for example, defined by the weights
of the edges).

This metric is defined as:

nDCG(𝑢) =
DCG(𝑢)

IDCG(u)

where the discounted cumulative gain (DCG) for the user is:

DCG(𝑢) =

|𝑅𝑢|∑︁
𝑘=1

𝑔𝑢(𝑣𝑘)

log2(1 + 𝑘)

where |𝑅𝑢| represents the length of the recommendation ranking for user 𝑢, 𝑔𝑢(𝑣𝑘) represents the grade of relevance
of user 𝑣𝑘 for user 𝑢 and 𝑣𝑘 is the 𝑘-th recommended user in the ranking.

Then, the IDCG(𝑢) term acts as a normalization, and it’s the best possible :math:mbox{DCG}(u) value.

Reference: K. Jarvelin, J. Kekälainen. Cumulated Gain-Based Evaluation of IR Techniques. ACM Transactions on
Information Systems, 20, 422–446 (2002).

Parameters

• cutoff: the (maximum) number of recommended users to consider in the computation of the metric.

Configuration file

nDCG:
cutoff:
type: int
values: [1,5,10]

164 Chapter 24. Link prediction/recommendation metrics summary



RELISON, Release 1.0.0

24.1.3 Precision

The precision metric measures the proportion of correctly recommended links in a recommendation:

P(𝑢) =
|𝑅𝑢 ∩ relevant(𝑢)|

|𝑅𝑢|

where 𝑅𝑢 represents the recommendation ranking for user 𝑢, and relevant(𝑢) is the set of links which have 𝑢 as origin
in the evaluation set.

Reference: R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval: The Concepts and Technology behind
Search, 2nd ed. (2011).

Parameters

• cutoff: the (maximum) number of recommended users to consider in the computation of the metric.

Configuration file

Precision:
cutoff:
type: int
values: [1,5,10]

24.1.4 Recall

The precision metric measures the proportion of correctly recommended links which have been discovered in a recom-
mendation:

R(𝑢) =
|𝑅𝑢 ∩ relevant(𝑢)|

|relevant(𝑢)|

where 𝑅𝑢 represents the recommendation ranking for user 𝑢, and relevant(𝑢) is the set of links which have 𝑢 as origin
in the evaluation set.

Reference: R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval: The Concepts and Technology behind
Search, 2nd ed. (2011).

Parameters

• cutoff: the (maximum) number of recommended users to consider in the computation of the metric.

Configuration file

Recall:
cutoff:
type: int
values: [1,5,10]
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24.2 Diversity metrics

Beyond the accuracy of the recommendations, one of the main dimensions which is commonly studied is their diversity
(i.e. how different the recommended users are among them). RELISON includes the following diversity measures:

• Community recall

• ERR-IA

• Intra-list diversity

• Predicted Gini complement

24.2.1 Community recall

The community recall is a metric based on the subtopic recall diversity metric in information retrieval. It is defined as the
proportion of different communities the target user could reach through a direct link if he followed all the recommended
users:

CommRecall(𝑢) =
1

|𝒞

⃒⃒⃒⃒
⃒ ⋃︁
𝑣∈𝑅𝑢

𝑐(𝑣)

⃒⃒⃒⃒
⃒

References:

• C. Zhai, W. W. Cohen, and J. Lafferty. Beyond Independent Relevance: Methods and Evaluation Metrics
for Subtopic Retrieval. 26th Annual International ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval (SIGIR 2003), 10–17 (2003).

• J. Sanz-Cruzado, S.M. Pepa, P. Castells. Structural novelty and diversity in link prediction. 9th Interna-
tional Workshop on Modeling Social Media (MSM 2018) at The Web Conference (WWW 2018). The
Web Conference Companion, pp. 1347–1351.

• J. Sanz-Cruzado, P. Castells. Beyond Accuracy in Link Prediction. BIAS 2020: Bias and Social Aspects
in Search and Recommendation, pp 79-94.

Input

In order for this metric to work, the recommendation program must receive a community partition.

Parameters

• cutoff: the (maximum) number of recommended users to consider in the computation of the metric.

Configuration file

Community recall:
cutoff:
type: int
values: [1,5,10]
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24.2.2 ERR-IA

This metric combines the accuracy of the recommendation with measuring the different aspects retrieved by the rec-
ommendation (here, we take communities as aspects). This particular metric, ERR-IA, given a correctly predicted link,
it weights down its importance when the community of the recommended candidate has already appeared in previous
positions of the ranking. It is defined as:

ERR-IA(𝑢) =
∑︁
𝑐∈𝒞

𝑝(𝑐|𝑢)ERR-IA(𝑢, 𝑐)

and

ERR-IA(𝑢, 𝑐) =

|𝑅𝑢|∑︁
𝑘=1

⎡⎣1

𝑘
𝑝(rel|𝑣𝑘, 𝑐)

𝑘−1∏︁
𝑗=1

(1 − 𝑝(rel|𝑣𝑗 , 𝑐))

⎤⎦
where 𝑣𝑘 is the recommended user in the 𝑘-th position in the ranking, and:

𝑝(rel|𝑣, 𝑐) =
1

2
1{(𝑢,𝑣)∈𝐸𝑡𝑒𝑠𝑡∧𝑐(𝑣)=𝑐}(𝑢, 𝑣)

where 𝐸𝑡𝑒𝑠𝑡 represents the set of test links. The probability 𝑝(𝑐|𝑢) represents the probability that the user 𝑢 is interested
on community 𝑐, and it is estimated by:

𝑝(𝑐|𝑢) =
|{𝑣 ∈ 𝑐|(𝑢, 𝑣) ∈ 𝐸 ∪ 𝐸𝑡𝑒𝑠𝑡}|∑︀

𝑐′∈𝒞 |{𝑣 ∈ 𝑐′|(𝑢, 𝑣) ∈ 𝐸 ∪ 𝐸𝑡𝑒𝑠𝑡}|

Reference: O. Chapelle, S. Ji, C. Liao, E. Velipasaoglu, L. Lai, and S. Wu. Intent-based diversification of web search
results: metrics and algorithms. Information Retrieval, 14(6), 572–592 (2011)

Input

In order for this metric to work, the recommendation program must receive a community partition.

Parameters

• cutoff: the (maximum) number of recommended users to consider in the computation of the metric.

Configuration file

nDCG:
cutoff:
type: int
values: [1,5,10]

24.2.3 Intra-list diversity

The intra-list diversity of a recommendation, measures the average distances between the recommended users. For this,
it uses some feature data (for instance, the contents of the tweets published by a user).

ILD =
1

|�̂�|

∑︁
(𝑢,𝑣)∈�̂�

∑︁
𝑤∈𝑅𝑢

𝑑(𝑣, 𝑤)

|𝑅𝑢|

where �̂� represents the whole set of recommended links, 𝑅𝑢 the set of users recommended to user 𝑢, and 𝑑(𝑢, 𝑣) is
the distance between the users (in this case, represented by one minus the cosine of the feature vector for each user).
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References:

• P. Castells, N. J. Hurley, and Saúl Vargas. Novelty and Diversity in Recommender Systems. Recom-
mender Systems Handbook, 2nd ed., 881–918 (2015).

• S. Vargas and P. Castells. Rank and Relevance in Novelty and Diversity Metrics for Recommender Sys-
tems. 5th ACM Conference on Recommender Systems (RecSys 2011), 109-116 (2011)

Input

In order for this metric to work, the recommendation program must receive a set of features representing the users (or
an index, generated by the TwittomenderIndexGenerator program).

Parameters

• cutoff: the (maximum) number of recommended users to consider in the computation of the metric.

Configuration file

ILD:
cutoff:
type: int
values: [1,5,10]

24.2.4 Predicted Gini complement

The predicted Gini complement how balanced the distribution of recommended users is among all the produced rec-
ommendations. It uses for this the Gini complement:

PGC = 1 − 1

|𝒰| − 1

|∑︁
𝑖=1

𝒰|(2𝑖− |𝒰| − 1)
|{𝑢|𝑣𝑖 ∈ 𝑅𝑢}|∑︀

𝑢 |𝑅𝑢|

where 𝑅𝑢 represents the recommendation ranking for user 𝑢, and 𝑣𝑖 is the 𝑖-th less recommended user.

References:

• S. Vargas and P. Castells. Improving Sales Diversity by Recommending Users to Items. 8th ACM Con-
ference on Recommender Systems (RecSys 2014), 145–152 (2014).

Parameters

• cutoff: the (maximum) number of recommended users to consider in the computation of the metric.
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Configuration file

Predicted Gini complement:
cutoff:
type: int
values: [1,5,10]

24.3 Novelty metrics

The novelty of a recommendation measures to which extent the user was unaware of the recommended people in the
network. RELISON includes the following novelty measures:

• Long tail novelty

• Mean prediction distance

• Unexpectedness

24.3.1 Long tail novelty

This metric (also known as expected popularity complement) represents the prior probability that a random person in
the network did not know about the recommended people:

LTN =
1

|�̂�|

∑︁
(𝑢,𝑣)∈�̂�

(︂
1 − |Γ𝑖𝑛(𝑣)|

|𝒰|

)︂

References:

• P. Castells, N. J. Hurley, and Saúl Vargas. Novelty and Diversity in Recommender Systems. Recom-
mender Systems Handbook, 2nd ed., 881–918 (2015).

• S. Vargas and P. Castells. Rank and Relevance in Novelty and Diversity Metrics for Recommender Sys-
tems. 5th ACM Conference on Recommender Systems (RecSys 2011), 109-116 (2011)

Input

In order for this metric to work, the recommendation program must receive a community partition.

Parameters

• cutoff: the (maximum) number of recommended users to consider in the computation of the metric.
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Configuration file

LTN:
cutoff:
type: int
values: [1,5,10]

24.3.2 Mean prediction distance

This metric measures how far from the target user the recommended people are. It is computed as the harmonic mean
of the reciprocal distances between the target and recommended users:

MPD =
|�̂�|∑︀

(𝑢,𝑣)∈�̂�
1

𝛿(𝑢,𝑣)

− 2

References:

• J. Sanz-Cruzado, S.M. Pepa, P. Castells. Structural novelty and diversity in link prediction. 9th Interna-
tional Workshop on Modeling Social Media (MSM 2018) at The Web Conference (WWW 2018). The
Web Conference Companion, pp. 1347–1351.

• J. Sanz-Cruzado, P. Castells. Beyond Accuracy in Link Prediction. BIAS 2020: Bias and Social Aspects
in Search and Recommendation, pp 79-94.

Parameters

• cutoff: the (maximum) number of recommended users to consider in the computation of the metric.

Configuration file

Mean prediction distance:
cutoff:
type: int
values: [1,5,10]

24.3.3 Unexpectedness

This metric measures how different the recommended users are to the contacts the target user already has:

Unexp =
1

�̂�

∑︁
(𝑢,𝑣)∈�̂�

1

|Γ𝑜𝑢𝑡(𝑢)|
∑︁

𝑤∈Γ𝑜𝑢𝑡(𝑢)

𝑑(𝑣, 𝑤)

where �̂� represents the whole set of recommended links, and 𝑑(𝑢, 𝑣) is the distance between the users (in this case,
represented by one minus the cosine of the feature vector for each user).

𝑝(𝑐|𝑢) =
|{𝑣 ∈ 𝑐|(𝑢, 𝑣) ∈ 𝐸 ∪ 𝐸𝑡𝑒𝑠𝑡}|∑︀

𝑐′∈𝒞 |{𝑣 ∈ 𝑐′|(𝑢, 𝑣) ∈ 𝐸 ∪ 𝐸𝑡𝑒𝑠𝑡}|

References:
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• P. Castells, N. J. Hurley, and Saúl Vargas. Novelty and Diversity in Recommender Systems. Recom-
mender Systems Handbook, 2nd ed., 881–918 (2015).

• S. Vargas and P. Castells. Rank and Relevance in Novelty and Diversity Metrics for Recommender Sys-
tems. 5th ACM Conference on Recommender Systems (RecSys 2011), 109-116 (2011)

Input

In order for this metric to work, the recommendation program must receive a set of features representing the users (or
an index, generated by the TwittomenderIndexGenerator program).

Parameters

• cutoff: the (maximum) number of recommended users to consider in the computation of the metric.

Configuration file

Unexpectedness:
cutoff:
type: int
values: [1,5,10]

24.4 Metrics

In order to evaluate link prediction approaches, it is common to use some machine learning and classification metrics.
We include the following ones:

• Accuracy

• Area under the ROC curve

• F1 Score

• Precision

• Recall

24.4.1 Accuracy

The accuracy measures the number of correctly classified links.

Accuracy =
TP + TN

TP + TN + FP + FN

where 𝑇𝑃 is the number of true positives, 𝐹𝑃 is the number of false positives, 𝑇𝑁 is the number of true negatives,
and 𝐹𝑁 is the number of false negatives.
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Parameters

We have two options here (mutually exclusive):

• cutoff: the (maximum) number of predicted links to consider (all the remaining links shall be considered as
negatively predicted links).

• threshold: the minimum score to consider as positive (all the remaining links shall be considered as negatively
predicted links).

When both appear in the configuration file, they will be considered separately.

Configuration file

Accuracy:
cutoff:
type: int
values: [1,5,10]

threshold:
type: double
values: [0.2,0.5,1.0]

24.4.2 Area under the ROC curve

The area under the receiver operating characteristic curve (AUC), as its name indicates, measures the area under a
curve. Such curve shows the rate of true positives as a function of the rate of false positives.

Reference: T. Fawcett. An introduction to ROC analysis. Pattern Recognition Letters, 27(8), 861–874 (2006).

Configuration file

AUC:

24.4.3 F1 Score

The F1 score combines precision and recall (see Precision and Recall, respectively) in a single value. It is the harmonic
mean of the two measures:

F1-score =
2 · TP

2 · TP + FN + FP

where 𝑇𝑃 is the number of true positives, 𝐹𝑃 is the number of false positives and 𝐹𝑁 is the number of false negatives.
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Parameters

We have two options here (mutually exclusive):

• cutoff: the (maximum) number of predicted links to consider (all the remaining links shall be considered as
negatively predicted links).

• threshold: the minimum score to consider as positive (all the remaining links shall be considered as negatively
predicted links).

When both appear in the configuration file, they will be considered separately.

Configuration file

F1-score:
cutoff:
type: int
values: [1,5,10]

threshold:
type: double
values: [0.2,0.5,1.0]

24.4.4 Precision

The precision measures the proportion of correctly predicted links among those the algorithm has label as positive.

Precision =
TP

TP + FP

where 𝑇𝑃 is the number of true positives and 𝐹𝑃 is the number of false positives.

Parameters

We have two options here (mutually exclusive):

• cutoff: the (maximum) number of predicted links to consider (all the remaining links shall be considered as
negatively predicted links).

• threshold: the minimum score to consider as positive (all the remaining links shall be considered as negatively
predicted links).

When both appear in the configuration file, they will be considered separately.

Configuration file

Precision:
cutoff:
type: int
values: [1,5,10]

threshold:
type: double
values: [0.2,0.5,1.0]
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24.4.5 Recall

The recall measures the proportion of correctly predicted links which have been labeled as positive

Precision =
TP

TP + FN

where 𝑇𝑃 is the number of true positives and 𝐹𝑁 is the number of false negatives.

Parameters

We have two options here (mutually exclusive):

• cutoff: the (maximum) number of predicted links to consider (all the remaining links shall be considered as
negatively predicted links).

• threshold: the minimum score to consider as positive (all the remaining links shall be considered as negatively
predicted links).

When both appear in the configuration file, they will be considered separately.

Configuration file

Recall:
cutoff:
type: int
values: [1,5,10]

threshold:
type: double
values: [0.2,0.5,1.0]
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TWENTYFIVE

INFORMATION DIFFUSION

Online social networks are dynamic environments where using are constantly creating and sharing new information:
that is the case of tweets on Twitter, posts on Facebook and Tumblr, etc. The diffusion of these user-generated contents
has been object of study for many decades. RELISON provides a diffusion simulator which can be used to perform
diffusion experiments.

We provide information about how to perform these simulations in this section.

Everything needed for the simulation of information diffusion is included in the diffusion module of the framework,
which can be imported using Maven as:

<dependency>
<groupId>es.uam.eps.ir</groupId>
<artifactId>RELISON-diffusion</artifactId>
<version>1.0.0</version>

</dependency>
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SIMULATION DESCRIPTION

In order to use the information diffusion simulations, it is important to understand how they work, so they can be
properly configured. Our simulations consider that time is discrete: they are divided in time steps, where information
is exchanged between the users (no information is spread in the network between two consecutive iterations of the
process). Then, in this section, we describe a single information diffusion step.

• Information spread

• Information reception

26.1 Information spread

We illustrate in the following feature the process for spreading information pieces to different people in the network:

In the figure, the woman in the left represents the user who is going to propagate some information in the network. At
each time step, she has three different lists of contents she can propagate:

• Own contents: These are contents originally created by the user.

• Received contents: These contents have been received by the user (and never spread before).

• Propagated contents: These contents have already been propagated in past iterations.

At every point of time, the user might spread a selection of the contents included in her three lists. To determine which
contents to spread, we use what we have named a selection mechanism. For instance, we might choose one item from
each list randomly, all of them, etc. The spread contents are moved to the propagated contents list.

Once the elements have been selected, it is necessary to choose the users who shall receive these information pieces.
This is done by a propagation mechanism, who chooses which users in the network might receive each of the infor-
mation pieces, and propagates the information to them. We shall later explain how users manage to receive and read
these user-generated contents.

But, once the user has propagated some information, we pass all the non-propagated information pieces coming from
the received list, and we establish if we are going to be able to propagate them in future iterations. For this, we use
what we call an expiration mechanism. This expiration mechanism determines (using some properties of the piece,
like the time it has been in the received list, the author of the piece, etc.) whether the user might be able to share the
information in the future (and, as such, it returns to the received list), or not (and the piece is removed from that list).
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Fig. 1: Example of the spreading information process.
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26.2 Information reception

Users store all the received information in a user-generated content list, named the received list. We need to describe
how pieces manage to reach the received list. We illustrate this in the following figure:

Fig. 2: Example of the receiving information process.

Each iteration, users receive a variable amount of information pieces (for instance, the three pieces in the figure).
However, it is uncommon for the people in the network to read all the information is received. Because of this, an
attention mechanism is provided, named sight mechanism which determines the subset of the received contents which
are actually read by the user. Any other piece is discarded, and never reaches the received list.

All the information pieces passing this filter are later included in the received list. However, it might happen that we
received any of the contents in the past (as it is the case of the blue content in the figure). Some of the available meta-
information of these user-generated contents might vary (for instance, we might have received it from different users).
So, it is interesting to somehow combine this information in order to store it in the received list. This is done by what
is called an update mechanism. The outcome of the update mechanism is then included in the received list.
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26.3 Use of timestamps

When they are introduced in the simulator, each user-generated content has an specific timestamp. If we also have
information about which contents have been forwarded by users different than their creator (e.g. retweets on Twitter,
shared posts on Facebook), each forwarded post also comes with a timestamp.

The simulator takes, in the initial iteration, the smallest of these timestamps. Then, each iteration, the simulation
increments this timestamp by taking the following available value, until no timestamp is available. These timestamps
can be used in the simulation protocol, to define a stop condition, etc.
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EXPERIMENTAL CONFIGURATION

RELISON provides a program for executing information diffusion simulations.

java -jar RELISON.jar diffusion configuration output numreps network multigraph directed␣
→˓weighted selfloops readtypes user-index info-index info (-rec rec-file -n n -test-
→˓graph test -userfeats file1,file2,...,fileN -infofeats file1,...,fileN -realprop file -
→˓previous file)

where:

• configuration: a YAML file containing the simulation parameters (See Configuration file below).

• output: the directory for storing the outcomes of the simulation.

• numreps: the number of executions of each simulation.

• network: path to a file containing the graph.

• multigraph: true if the network allows multiple edges between each pair of users, false otherwise.

• directed: true if the network is directed, false otherwise.

• weighted: true if we want to use the weights of the links, false otherwise (weights will be binary).

• selfloops: true if we allow links between a node and itself, false otherwise.

• readtypes: true if we want to read the types of the edges, false otherwise.

• user-index: a path containing the identifiers of the users (one on each line).

• info-index: a path containing the identifiers of the information pieces / user-generated contents (one on each
line)

• info: a path containing the user-generated contents.

• Optional arguments:

– -rec rec-file: path to a recommendation file, whose edges will be added to the network.

– -n n: the number of links (per user) to add from the recommendation (if any). By default: 10.

– -test-graph file: route to a network file containing additional edges (and shall be used for filtering
the recommended edges to add).

– -userfeats file1,file2,...,fileN: a comma-separated list of files containing the features for
the users in the network (e.g. communities).

– -infofeats file1,file2,...,fileN: a comma-separated list of files containing the features for
the information pieces (e.g. hashtags).

– -realprop file: a file indicating which information pieces have been repropagated by users in
another information diffusion process.
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– -previous file: file containing the result of a previous diffusion procedure.

27.1 Configuration file

The configuration file has the following format:

simulations:
- protocol:

name: protocol_name
type: preconfigured
params:
param_name1:
type: int/double/boolean/string/long/orientation/object
value: value
object:
name: object_name
params:
param_name1: <...>

param_name2:
<...>

stop:
name: stop_condition_name
params:
param_name1:
<...>

filters:
filter_name:
param_name1:
<...>

- protocol:
name: protocol_name
type: custom
selection:
name: selection_name
params:
param_name1:
type: <...>

expiration:
name: selection_name
params:
param_name1:
type: <...>

update:
name: update_name
params:
param_name1:
type: <...>

propagation:
name: propagation_name
params:
param_name1:
type: <...>

(continues on next page)
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(continued from previous page)

sight:
name: sight_name
params:
param_name1:
type: <...>

- protocol: <...>

As we can see in the previous code, each element in the list corresponds to a different simulation. Each simulation
consists on three different elements:

• filter: modifies the input data. For instance, it just considers information pieces created before a given timestamp.

• stop: the stop condition of the simulation (after no information is propagated, after a given timestamp is
reached. . . )

• protocol: the simulation protocol. Indicates how the information travels through the network. We differentiate
two types of protocol:

– preconfigured: the protocol is fully implemented in the library

– custom: we build a new protocol by combining its different elements.

27.2 Input files

27.2.1 Information pieces file

The information pieces (individual user-generated contents) file needs to have the following format (CSV divided by
tabs):

infoId userId text reprCount likeCount created truncated

where

• infoId: identifier of the information piece.

• userId: identifier of the creator.

• text: the content of the information piece.

• reprCount: number of times the piece has been repropagated.

• likeCount: number of likes the piece has been received.

• created: UNIX timestamp indicating the date of creation.

• truncated: whether we are taking the complete text, or just a small part.

The text must be in UTF-8 format, and user-generated contents are separated by line skips. Fields (like text) which
might have tabs or line skips inside must be properly escaped, and surrounded by “”.
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27.2.2 Real propagated information file

The file indicating which information pieces where repropagated in another diffusion procedure has the following
format (divided by tabs)

userId infoId timestamp

where

• userId: identifier of the user who repropagated a piece.

• infoId: identifier of the repropagated content.

• timestamp: UNIX timestamp of the propagation.

27.2.3 Feature files

The files containing information about user / information features have the following format. Each line, they include
one user/piece - feature pair, separated by tab.

userId/infoId featureId

27.3 Output files

For each simulation, this program generates an output file. However, this output file is binary (and therefore, it cannot
be easily read with a text editor). However, it can be read using the provided code.
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EVALUATION OF THE INFORMATION DIFFUSION PROCESS

Once the information diffusion has been run, we can evaluate the different properties of the simulation. For this,
RELISON provides a program. In order to execute this program, the following command line has to be used:

java -jar RELISON.jar diffusion-eval configuration network multigraph directed weighted␣
→˓selfloops readtypes user-index info-index input-folder output-folder info (-rec rec-
→˓file -n n -test-graph test -userfeats file1,file2,...,fileN -infofeats file1,...,fileN␣
→˓-realprop file)

where:

• configuration: a YAML file containing the parameters for the evaluation (See Configuration file below).

• network: path to a file containing the graph.

• multigraph: true if the network allows multiple edges between each pair of users, false otherwise.

• directed: true if the network is directed, false otherwise.

• weighted: true if we want to use the weights of the links, false otherwise (weights will be binary).

• selfloops: true if we allow links between a node and itself, false otherwise.

• readtypes: true if we want to read the types of the edges, false otherwise.

• user-index: a path containing the identifiers of the users (one on each line).

• info-index: a path containing the identifiers of the information pieces / user-generated contents (one on each
line)

• input-folder: a directory containing the simulations to evaluate.

• output-folder: a directory for storing the evaluations.

• info: a path containing the user-generated contents.

• Optional arguments:

– -rec rec-file: path to a recommendation file, whose edges will be added to the network. Only
used if identifying the recommendation edges is important for evaluating the diffusion.

– -n n: the number of links (per user) to add from the recommendation (if any). By default: 10.

– -test-graph file: route to a network file containing additional edges (and shall be used for filtering
the recommended edges to add).

– -userfeats file1,file2,...,fileN: a comma-separated list of files containing the features for
the users in the network (e.g. communities).

– -infofeats file1,file2,...,fileN: a comma-separated list of files containing the features for
the information pieces (e.g. hashtags).

185



RELISON, Release 1.0.0

– -realprop file: a file indicating which information pieces have been repropagated by users in
another information diffusion process.

28.1 Configuration file

The configuration file has the following format:

metrics:
metric_name1:
param_name1:
type: int/double/boolean/string/long/orientation/object
value: value
object:
name: object_name
params:
param_name1: <...>

param_name2:
<...>

metric_name2:
<...>

distributions:
distribution_name:
params:
param_name1:
<...>

times: [iter1,...,iterN]
filters:
filter_name:
param_name1:
<...>

As we can see in the previous code, we have to read three different elements:

• metrics: contains the metrics to compute in the simulation. The program computes them every iteration, and
then outputs them in a file (see Output files).

• distributions: in addition to metrics, we can find distributions (e.g. the number of times each piece has been
received). Differently from metrics, the user has to indicate for which iterations the program should find these
distributions. This is indicated in the times field.

• filter: modifies the input data. For instance, it just considers information pieces created before a given timestamp.
It should be the same as in the diffusion procedure.

28.2 Input files

28.2.1 Information pieces file

The information pieces (individual user-generated contents) file needs to have the following format (CSV divided by
tabs):

infoId userId text reprCount likeCount created truncated
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where

• infoId: identifier of the information piece.

• userId: identifier of the creator.

• text: the content of the information piece.

• reprCount: number of times the piece has been repropagated.

• likeCount: number of likes the piece has been received.

• created: UNIX timestamp indicating the date of creation.

• truncated: whether we are taking the complete text, or just a small part.

The text must be in UTF-8 format, and user-generated contents are separated by line skips. Fields (like text) which
might have tabs or line skips inside must be properly escaped, and surrounded by “”.

28.2.2 Real propagated information file

The file indicating which information pieces where repropagated in another diffusion procedure has the following
format (divided by tabs)

userId infoId timestamp

where

• userId: identifier of the user who repropagated a piece.

• infoId: identifier of the repropagated content.

• timestamp: UNIX timestamp of the propagation.

28.2.3 Feature files

The files containing information about user / information features have the following format. Each line, they include
one user/piece - feature pair, separated by tab.

userId/infoId featureId

28.3 Output files

We differentiate two types of files: metrics and diffusion files.

28.3.1 Metric files

For a simulation, the format of each line of these files is the following (tab separated): All the metrics for the simulation
are displayed in the same file. A file per simulation is generated.

numIter metric1 metric2 metric3 ... metricN

In the first line, a header will be displayed, indicating which value corresponds to which metric.
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28.3.2 Distribution files

The format for the distribution files is (tab-separated):

element value
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DIFFUSION PROTOCOL SUMMARY

The RELISON framework allows the execution of many different information diffusion protocols. Some of them are
pre-defined (following some previous research works). You can find the list of protocols in the following link:

29.1 Protocols

RELISON provides some pre-configured diffusion protocols which can be straightforwardly applied. We list them here
and provide a brief description of them:

• Independent cascade model

• Pull

• Push

• Rumor spreading

• Simple

• Temporal

• Threshold

29.1.1 Independent cascade model

When diffusion works under this protocol, each time a user receives an information piece, he/she propagates this content
to their followers according to a given probability. This probability depends only on the previous user who propagated
the information. If the information is not repropagated, then it is discarded.

Reference: J. Goldenberg, B. Libai, and E. Muller. Talk of the Network: A Complex Systems Look at the Underlying
Process of Word-of-Mouth, Marketing Letters, 12(3), pp. 211–223 (2001).

Parameters

• numOwn: the number of contents created by the user to propagate each iteration.

• prob: the probability of sharing a received piece of information (the same for all the users).

Note: when used in code, there is another option, which takes as input a graph containing the probabilities. However,
this option is not (at the moment) available from a configuration file.
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Configuration file

Independent cascade model:
prob:
type: double
value: value

numOwn:
type: int
value: value

29.1.2 Pull

Under this protocol, each iteration, the user selects one of his followees, and obtains the information from that user.
The neighbor just propagates a fixed number of their created contents and a fixed number of the received contents.

Reference: A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson. Epidemic algorithms for replicated database main-
tenance. ACM PODC 1987, pp. 1-12 (1987).

Parameters

• numOwn: the number of contents created by the user to propagate each iteration.

• numRec: the number of received contents to propagate each iteration.

• numWait: number of iterations that the user has to wait before selecting the same neighbor again.

Note: when used in code, there is another option, which takes as input a graph containing the probabilities. However,
this option is not (at the moment) available from a configuration file.

Configuration file

Pull:
numOwn:
type: int
value: value

numRec:
type: int
value: value

numWait:
type: int
value: value
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29.1.3 Push

Under this protocol, each iteration, the user selects one of his followers, and propagates him/her information. He/she
just propagates a fixed number of their created contents and a fixed number of the received contents.

Reference: A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson. Epidemic algorithms for replicated database main-
tenance. ACM PODC 1987, pp. 1-12 (1987).

Parameters

• numOwn: the number of contents created by the user to propagate each iteration.

• numRec: the number of received contents to propagate each iteration.

• numWait: number of iterations that the user has to wait before selecting the same neighbor again.

Note: when used in code, there is another option, which takes as input a graph containing the probabilities. However,
this option is not (at the moment) available from a configuration file.

Configuration file

Push:
numOwn:
type: int
value: value

numRec:
type: int
value: value

numWait:
type: int
value: value

29.1.4 Rumor spreading

Also called push-pull protocol, this is a combination of the Pull and Push protocols, where each user selects a neighbors,
and he/she just propagates a fixed number of their created contents and a fixed number of the received contents to the
neighbor, and the neighbor sends it to him.

We consider a second version, named bidirectional rumor-spreading model, which does not consider the orientation
of the edges for selecting the nodes from which receive information and towards whom propagate information.

Reference: A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson. Epidemic algorithms for replicated database main-
tenance. ACM PODC 1987, pp. 1-12 (1987).
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Parameters

• numOwn: the number of contents created by the user to propagate each iteration.

• numRec: the number of received contents to propagate each iteration.

• numWait: number of iterations that the user has to wait before selecting the same neighbor again.

Note: when used in code, there is another option, which takes as input a graph containing the probabilities. However,
this option is not (at the moment) available from a configuration file.

Configuration file

For the basic rumor spreading model, the configuration is the following:

Rumor spreading model:
numOwn:
type: int
value: value

numRec:
type: int
value: value

numWait:
type: int
value: value

whereas, for the bidirectional version, it is:

Bidirectional rumor spreading model:
numOwn:
type: int
value: value

numRec:
type: int
value: value

numWait:
type: int
value: value

29.1.5 Simple

In the simple protocol, each iteration, the user propagates some of his own contents and (at most) a fixed number of the
received contents (selected at random) to his followers.
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Parameters

• numOwn: the number of contents created by the user to propagate each iteration.

• numRec: the number of received contents to propagate each iteration.

Note: when used in code, there is another option, which takes as input a graph containing the probabilities. However,
this option is not (at the moment) available from a configuration file.

Configuration file

Simple:
numOwn:
type: int
value: value

numRec:
type: int
value: value

29.1.6 Temporal

The temporal protocol just runs, step by step, how information was propagated in an earlier diffusion: it only propagates
a piece at the timestamp it was propagated during the previous diffusion and it only repropagates a piece if the user
originally repropagated it.

Parameters

• pure: if true, the user-generated contents are only repropagated if they user received them before the date he
repropagated it in the previous diffusion. If he receives it later, he does not propagate it.

Configuration file

Temporal:
pure:
type: boolean
value: true/false

29.1.7 Threshold

In the threshold model, the users decide to propagate a received piece of content only if a certain threshold of users has
sent it to them. We differentiate two variants:

• Proportion threshold: the user decides to propagate a piece after more than a given proportion of the users have
sent him the content.

• Count threshold: the user decides to propagate a piece after more than a given number of the users have sent
him the content.

Reference: D. Kempe, J. Kleinberg, and E. Tardos. Maximizing the spread of influence through a social network,
KDD 2003, pp. 137–146 (2003).
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Parameters

For the probability threshold version, the arguments are the following ones:

• numOwn: the number of contents created by the user to propagate each iteration.

• threshold: the minimum proportion of users who must send a user-generated content to the user before it can
be propagated.

and, for the count threshold version:

• numOwn: the number of contents created by the user to propagate each iteration.

• threshold: the minimum number of users who must send a user-generated content to the user before it can be
propagated.

Configuration file

For the proportion threshold version, the configuration is the following:

Proportion threshold:
numOwn:
type: int
value: value

numRec:
type: int
value: value

threshold:
type: double
value: value

whereas, for the other version, it is:

Count threshold:
numOwn:
type: int
value: value

numRec:
type: int
value: value

threshold:
type: int
value: value

However, in order to make the diffusion module configurable, it is also possible to define custom diffusion protocols,
built from their fundamental elements, as described in the Simulation description section. The framework already
defines some of this parts, which can be found below:
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29.2 Expiration mechanisms

During the simulations, users receive many information pieces. However, they do not share them all with their contacts
in the same moment they receive them: sometimes, they are never propagated; other times, they are propagated many
iterations later (according to other factors, like the amount of people who has sent them the information). Expiration
mechanisms decide whether a piece which has been received but not propagated can still be shared in the upcoming
iterations.

RELISON has implemented many expiration mechanisms, which can be used to build custom protocols. We provide
them a brief explanation below.

• All not propagated

• All not real propagated

• All not real propagated with timestamp

• Exponential decay

• Infinite time

• Timed

29.2.1 All not propagated

Under this expiration mechanism, every user-generated content which has been received but not repropagated is dis-
carded.

Configuration file

expiration:
name: All not propagated

29.2.2 All not real propagated

Under this expiration mechanism, the only information pieces that can still be shared in the future are those which were
actually shared during a previous diffusion process.

Configuration file

expiration:
name: All not real propagated
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29.2.3 All not real propagated with timestamp

This expiration mechanism follows the All not real propagated one, but with a twist. Under this expiration mechanism,
the only information pieces that can still be shared in the future are those which were actually shared during a previous
diffusion process if and only if the timestamp of the repropagation has not yet passed.

Configuration file

expiration:
name: All not real propagated timestamp

29.2.4 Exponential decay

In this expiration mechanism, each information piece has a probability of staying on the list over time, following and
exponential distribution: The probability that an information piece can still be propagated after 𝑡 iterations is:

𝑝(𝑖) = 𝑒−𝜆𝑡

where 𝜆 is what we call the “half-life” of the content, i.e. the time required for the piece to have a 50% probability of
being removed.

Parameters

• half-life: the time required for the piece to have a 50% probability of being discarded.

Configuration file

expiration:
name: Exponential decay
params:
half-life:
type: double
value: value

29.2.5 Infinite time

In this expiration mechanism, information pieces are never discarded: once the user has received them, they remain in
the received list until the user decides to share it.

Configuration file

expiration:
name: Infinite time
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29.2.6 Timed

When this expiration mechanism is used, a received information piece has to be shared before a fixed time has passed.
Otherwise, it is discarded.

Parameters

• max-time: the number of iterations before an information piece is discarded.

Configuration file

expiration:
name: Timed
params:
max-time:
type: int
value: value

29.3 Propagation mechanisms

The propagation mechanism selects the people in the network who shall receive each separate information piece. RELI-
SON provides the following propagation mechanisms:

• All neighbors

• All recommended neighbors

• Pull

• Pull-push

• Pull-push pure recommended

• Pull-push recommended

• Push

29.3.1 All neighbors

This mechanism sends the information pieces to all the neighbors of the user.

Parameters

• orientation: the neighborhood to consider.

– IN: it considers the incoming neighborhood of the target user.

– OUT: it considers the outgoing neighborhood of the target user.

– UND: it considers the all the possible neighbors of the target users (Γ𝑜𝑢𝑡(𝑢) ∪ Γ𝑖𝑛(𝑢))

– MUTUAL: it considers as neighbors those who share a reciprocal link with the target user (Γ𝑜𝑢𝑡(𝑢)∩Γ𝑖𝑛(𝑢))
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Configuration file

propagation:
name: All neighbors
params:
orientation:
type: orientation
value: IN/OUT/UND/MUTUAL

29.3.2 All recommended neighbors

This mechanism sends the information pieces to all the recommended neighbors of the user (i.e. it only propagates
information through links created by a link recommendation).

Parameters

• orientation: the neighborhood to consider.

– IN: it considers the incoming neighborhood of the target user.

– OUT: it considers the outgoing neighborhood of the target user.

– UND: it considers the all the possible neighbors of the target users (Γ𝑜𝑢𝑡(𝑢) ∪ Γ𝑖𝑛(𝑢))

– MUTUAL: it considers as neighbors those who share a reciprocal link with the target user (Γ𝑜𝑢𝑡(𝑢)∩Γ𝑖𝑛(𝑢))

Configuration file

propagation:
name: All recommended neighbors
params:
orientation:
type: orientation
value: IN/OUT/UND/MUTUAL

29.3.3 Pull

In this mechanism, each user selects one of his/her neighbors. Then, the selected neighbor sends him/her the informa-
tion. After a neighbor is selected, some time needs to pass before it can be selected again.

Parameters

• orientation: the neighborhood to consider.

– IN: it considers the incoming neighborhood of the target user.

– OUT: it considers the outgoing neighborhood of the target user.

– UND: it considers the all the possible neighbors of the target users (Γ𝑜𝑢𝑡(𝑢) ∪ Γ𝑖𝑛(𝑢))

– MUTUAL: it considers as neighbors those who share a reciprocal link with the target user (Γ𝑜𝑢𝑡(𝑢)∩Γ𝑖𝑛(𝑢))

• waitTime: the amount of time that needs to pass before a neighbor can be selected again.
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Configuration file

expiration:
name: Pull
params:
orientation:
type: orientation
value: IN/OUT/UND/MUTUAL

waitTime:
type: int
value: num_iter

29.3.4 Pull-push

In this mechanism, we combine the Push and the Pull mechanisms: here, each user selects a neighbor. Then, he/she
sends the information pieces to that neighbor, and the neighbor sends the information to him/her. After a neighbor is
selected, some time needs to pass before it can be selected again.

Parameters

• orientation: the neighborhood to consider.

– IN: it considers the incoming neighborhood of the target user.

– OUT: it considers the outgoing neighborhood of the target user.

– UND: it considers the all the possible neighbors of the target users (Γ𝑜𝑢𝑡(𝑢) ∪ Γ𝑖𝑛(𝑢))

– MUTUAL: it considers as neighbors those who share a reciprocal link with the target user (Γ𝑜𝑢𝑡(𝑢)∩Γ𝑖𝑛(𝑢))

• waitTime: the amount of time that needs to pass before a neighbor can be selected again.

Configuration file

expiration:
name: Push-pull
params:
orientation:
type: orientation
value: IN/OUT/UND/MUTUAL

waitTime:
type: int
value: num_iter
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29.3.5 Pull-push pure recommended

This mechanism is just a version of the Pull-push propagation mechanism, that limits the neighbor selection to the links
created by a recommendation algorithm.

Parameters

• orientation: the neighborhood to consider.

– IN: it considers the incoming neighborhood of the target user.

– OUT: it considers the outgoing neighborhood of the target user.

– UND: it considers the all the possible neighbors of the target users (Γ𝑜𝑢𝑡(𝑢) ∪ Γ𝑖𝑛(𝑢))

– MUTUAL: it considers as neighbors those who share a reciprocal link with the target user (Γ𝑜𝑢𝑡(𝑢)∩Γ𝑖𝑛(𝑢))

• waitTime: the amount of time that needs to pass before a neighbor can be selected again.

Configuration file

expiration:
name: Pull-push pure recommended
params:
orientation:
type: orientation
value: IN/OUT/UND/MUTUAL

waitTime:
type: int
value: num_iter

29.3.6 Pull-push recommended

This mechanism is just a version of the Pull-push propagation mechanism, that, with a given probability 𝑝, selects a
neighbors between the connections by a recommendation algorithm, and, with probability 1 − 𝑝, selects one of the
original neighbors of the user.

Parameters

• orientation: the neighborhood to consider.

– IN: it considers the incoming neighborhood of the target user.

– OUT: it considers the outgoing neighborhood of the target user.

– UND: it considers the all the possible neighbors of the target users (Γ𝑜𝑢𝑡(𝑢) ∪ Γ𝑖𝑛(𝑢))

– MUTUAL: it considers as neighbors those who share a reciprocal link with the target user (Γ𝑜𝑢𝑡(𝑢)∩Γ𝑖𝑛(𝑢))

• waitTime: the amount of time that needs to pass before a neighbor can be selected again.

• prob: the probability of selecting a recommended neighbor.
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Configuration file

propagation:
name: Pull-push recommended
params:
orientation:
type: orientation
value: IN/OUT/UND/MUTUAL

waitTime:
type: int
value: num_iter

prob:
type: double
value: probability

29.3.7 Push

In this mechanism, each user selects one of his/her neighbors. Then, he/she sends all the information pieces to that
neighbor. After a neighbor is selected, some time needs to pass before it can be selected again.

Parameters

• orientation: the neighborhood to consider.

– IN: it considers the incoming neighborhood of the target user.

– OUT: it considers the outgoing neighborhood of the target user.

– UND: it considers the all the possible neighbors of the target users (Γ𝑜𝑢𝑡(𝑢) ∪ Γ𝑖𝑛(𝑢))

– MUTUAL: it considers as neighbors those who share a reciprocal link with the target user (Γ𝑜𝑢𝑡(𝑢)∩Γ𝑖𝑛(𝑢))

• waitTime: the amount of time that needs to pass before a neighbor can be selected again.

Configuration file

propagation:
name: Push
params:
orientation:
type: orientation
value: IN/OUT/UND/MUTUAL

waitTime:
type: int
value: num_iter
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29.4 Selection mechanisms

The selection mechanism identifies the information pieces which the users will propagate each iteration. RELISON
provides the following mechanisms:

• Count

• Independent cascade model

• Only own

• Pull-push

• Real propagated

• Recommender

• Threshold

• Timestamp-based

• Timestamp-ordered

29.4.1 Count

This mechanism selects, at a given time, a fixed number of pieces created by the user, a fixed number of the received
pieces and a fixed number of the already propagated pieces to send to other users. Pieces are randomly selected.

Parameters

• numOwn: the number of user-created information pieces to propagate.

• numRec: the number of received pieces to propagate.

• numRepr: (OPTIONAL) the number of already propagated pieces to repropagate again. By default: 0.

Configuration file

selection:
name: Count
params:
numOwn:
type: int
value: number_of_own_pieces

numRec:
type: int
value: number_of_received_pieces

(numRepr:
type: int
value: number_of_pieces_to_repropagate_again)
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29.4.2 Independent cascade model

This mechanism selects, at a given time, for each user, a fixed number of pieces created by the user and a fixed number
of the already propagated pieces to send to other users. Then, propagates received pieces with a probability that depends
only on the user who sent him the conent.

Parameters

• numOwn: the number of user-created information pieces to propagate.

• prob: the probability of propagating an information piece.

• numRepr: (OPTIONAL) the number of already propagated pieces to repropagate again. By default: 0.

Note: when used in code, there is another option, which takes as input a graph containing the probabilities. However,
this option is not (at the moment) available from a configuration file.

Configuration file

selection:
name: Independent cascade model
params:
numOwn:
type: int
value: number_of_own_pieces

prob:
type: double
value: probability

(numRepr:
type: int
value: number_of_pieces_to_repropagate_again)

29.4.3 Only own

This mechanism only propagates information pieces created by the user. It selects a fixed number of them (chosen
randomly).

Parameters

• numOwn: the number of user-created information pieces to propagate.

• numRepr: (OPTIONAL) the number of already propagated pieces to repropagate again. By default: 0.
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Configuration file

selection:
name: Only own
params:
numOwn:
type: int
value: number_of_own_pieces

(numRepr:
type: int
value: number_of_pieces_to_repropagate_again)

29.4.4 Pull-push

This mechanism makes a user share all the information he knows (i.e. all the received information and all the infor-
mation he has propagated in the past). Along with this, it selects a fixed number of their own (not already propagated)
contents.

Parameters

• numOwn: the number of user-created information pieces to propagate.

Configuration file

selection:
name: Push-pull
params:
numOwn:
type: int
value: number_of_own_pieces

29.4.5 Real propagated

This mechanism selects, at a given time, a fixed number of the pieces created by the user, a fixed number of already
propagated pieces, and the user repropagates a selection of the received information pieces that he/she forwarded in a
previous diffusion process (for example, real retweets extracted from Twitter).

Depending on how many of the received information pieces that the user propagates, we differentiate two variants: *
all: each time the user receives a piece he / she forwarded in a previous diffusion process, he / she propagates it. *
count: it just selects up to a maximum number of those pieces.
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Parameters

Both variants share the following parameters * numOwn: the number of user-created information pieces to propagate.
* numRepr: (OPTIONAL) the number of already propagated pieces to repropagate again. By default: 0.

The count version has an additional parameter: * numRec: the number of received pieces to propagate.

Configuration file

The version that propagates all the received pieces passing the filter has the following configuration file: .. code:: yaml

selection:
name: All real propagated
params:
numOwn:
type: int
value: number_of_own_pieces

(numRepr:
type: int
value: number_of_pieces_to_repropagate_again)

while the version that propagates only some of them:

selection:
name: Count real propagated
params:
numOwn:
type: int
value: number_of_own_pieces

(numRepr:
type: int
value: number_of_pieces_to_repropagate_again)

29.4.6 Recommender

This mechanism selects, at a given time, a fixed number of the pieces created by the user. At the moment of selecting
which pieces to propagate from the received ones, it also selects (at most) a fixed number, but considers the origin of
those pieces. With a given probability 𝑝, it chooses a piece received from a link created via a recommendation. With
1 − 𝑝, it selects a piece from one of the original links.

Depending on how the selection is done, we differentiate three variants:

• basic: before choosing an information piece, a coin is tossed to determine from which list the information piece
to propagate will be selected.

• batch: each iteration, for each user, it is selected whether all the pieces are selected from the set of recommended
links or from the set of original links.

• pure: here, we take 𝑝 =, i.e. pieces always come from the recommended links.
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Parameters

All variants share the following parameters: * numOwn: the number of user-created information pieces to propagate. *
orientation: the neighborhood to consider.

• IN: it considers the incoming neighborhood of the target user.

• OUT: it considers the outgoing neighborhood of the target user.

• UND: it considers the all the possible neighbors of the target users (Γ𝑜𝑢𝑡(𝑢) ∪ Γ𝑖𝑛(𝑢))

• MUTUAL: it considers as neighbors those who share a reciprocal link with the target user (Γ𝑜𝑢𝑡(𝑢) ∩ Γ𝑖𝑛(𝑢))

And the basic and batch variants also have the following one: * prob: probability of choosing pieces which have been
sent through recommended links.

Configuration file

The basic version has the following configuration file:

selection:
name: Recommender
params:
numOwn:
type: int
value: number_of_own_pieces

numRec:
type: int
value: number_of_received_pieces

prob:
type: double
value: probability

orientation:
type: orientation
value: IN/OUT/UND/MUTUAL

(numRepr:
type: int
value: number_of_pieces_to_repropagate_again)

while the batch version has:

selection:
name: Batch recommender
params:
numOwn:
type: int
value: number_of_own_pieces

numRec:
type: int
value: number_of_received_pieces

prob:
type: double
value: probability

orientation:
type: orientation

(continues on next page)
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value: IN/OUT/UND/MUTUAL
(numRepr:
type: int
value: number_of_pieces_to_repropagate_again)

and the pure one:

selection:
name: Pure recommender
params:
numOwn:
type: int
value: number_of_own_pieces

numRec:
type: int
value: number_of_received_pieces

orientation:
type: orientation
value: IN/OUT/UND/MUTUAL

(numRepr:
type: int
value: number_of_pieces_to_repropagate_again)

29.4.7 Threshold

In the threshold selection mechanism, the users decide to propagate a received piece of content only if a certain threshold
of users has sent it to them. We differentiate two variants:

• Probability threshold: the user decides to propagate a piece after more than a given proportion of the users
have sent him the content.

• Count threshold: the user decides to propagate a piece after more than a given number of the users have sent
him the content.

Then, for each of them, we consider two possibilities, depending on how many pieces that overcome the threshold are
shared: * all: we propagate all the received pieces that pass the filter. * limited: we propagate (at most) a fixed number
of them.

Reference: D. Kempe, J. Kleinberg, and E. Tardos. Maximizing the spread of influence through a social network,
KDD 2003, pp. 137–146 (2003).

Parameters

All versions receive the following parameters: * numOwn: the number of contents created by the user to propagate each
iteration. * numRepr: (OPTIONAL) the number of already propagated pieces to repropagate again. By default: 0.

In the probability thresold version, we have this additional parameters * threshold: the minimum proportion of users
who must send a user-generated content to the user before it can be propagated. * orientation: the neighbor selection.

• IN: it considers the incoming neighborhood of the target user.

• OUT: it considers the outgoing neighborhood of the target user.

• UND: it considers the all the possible neighbors of the target users (Γ𝑜𝑢𝑡(𝑢) ∪ Γ𝑖𝑛(𝑢))
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• MUTUAL: it considers as neighbors those who share a reciprocal link with the target user (Γ𝑜𝑢𝑡(𝑢) ∩ Γ𝑖𝑛(𝑢))

whereas we have the following one for the count version: * threshold: the minimum number of users who must send
a user-generated content to the user before it can be propagated.

Finally, both limited versions have this parameter: * numRec: the maximum number of received pieces to propagate.

Configuration file

For the probability threshold version, the configuration is the following:

selection:
name: Proportion threshold
params:
numOwn:
type: int
value: value

orientation:
type: orientation
value: IN/OUT/UND/MUTUAL

threshold:
type: double
value: value

(numRepr:
type: int
value: value)

whereas, for the count version, it is:

selection:
name: Count threshold
params:
numOwn:
type: int
value: value

threshold:
type: int
value: value

(numRepr:
type: int
value: value)

Then, the limited version of the probability threshold is:

selection:
name: Limited proportion threshold
params:
numOwn:
type: int
value: value

numRec:
type: int
value: value

orientation:
(continues on next page)
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type: orientation
value: IN/OUT/UND/MUTUAL

threshold:
type: double
value: value

(numRepr:
type: int
value: value)

and the limited count threshold:

selection:
name: Limited count threshold
params:
numOwn:
type: int
value: value

numRec:
type: int
value: value

threshold:
type: int
value: value

(numRepr:
type: int
value: value)

29.4.8 Timestamp-based

In these selection mechanisms, a user does only propagate his own content when the timestamp of the simulation
corresponds to the timestamp on a previous diffusion process.

Depending on how the received pieces are shared with other users, we differentiate two cases: * Loose: in this case,
a received information piece is shared a) only if the user shared it in a previous process and b) only if the current
timestamp is smaller or equal to the timestamp at which the user shared it in that process. * Pure: in this case,
a received information piece is shared a) only if the user shared it in a previous process and b) only if the current
timestamp is smaller or equal to the timestamp at which the user shared it in that process.

Configuration file

For the loose version, the configuration is the following:

selection
name: Loose timestamp-based

whereas, for the pure version, it is:

selection
name: Pure timestamp-based
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29.4.9 Timestamp-ordered

This selection mechanism is equivalent to Count, but, pieces are selected according to their creation / reception times-
tamps.

Parameters

• numOwn: the number of user-created information pieces to propagate.

• numRec: the number of received pieces to propagate.

• numRepr: (OPTIONAL) the number of already propagated pieces to repropagate again. By default: 0.

Configuration file

selection:
name: Timestamp-ordered
params:
numOwn:
type: int
value: number_of_own_pieces

numRec:
type: int
value: number_of_received_pieces

(numRepr:
type: int
value: number_of_pieces_to_repropagate_again)

29.5 Sight mechanisms

Once some information pieces have been received, users do not pay the same attention to all of them: they just read
some of them, who they might be interested in. This mechanism models this: it allows to select which information
pieces are observed by the user. We provide the following sight mechanisms in RELISON:

• All

• All not discarded

• All not propagated

• All not discarded nor propagated

• All recommended

• All train

• Count

• Recommended
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29.5.1 All

This mechanism makes users see all the information pieces they have received.

Configuration file

sight:
name: All

29.5.2 All not discarded

The users read all the received user-generated contents which have not been discarded earlier by the expiration mech-
anism.

Configuration file

sight:
name: All not discarded

29.5.3 All not propagated

The users read all the received user-generated contents which have not been propagated earlier by the user.

Configuration file

sight:
name: All not propagated

29.5.4 All not discarded nor propagated

A combination of the All not discarded and All not propagated mechanisms: a user sees all the information pieces who
he has never propagated or discarded in earlier iterations.

Configuration file

sight:
name: All not propagated nor discarded
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29.5.5 All recommended

When this mechanism is used, each user sees all the information pieces coming from recommended users, and which
have not previously propagated by the user.

Parameters

• orientation: the neighborhood to consider.

– IN: it considers the incoming neighborhood of the target user.

– OUT: it considers the outgoing neighborhood of the target user.

– UND: it considers the all the possible neighbors of the target users (Γ𝑜𝑢𝑡(𝑢) ∪ Γ𝑖𝑛(𝑢))

– MUTUAL: it considers as neighbors those who share a reciprocal link with the target user (Γ𝑜𝑢𝑡(𝑢)∩Γ𝑖𝑛(𝑢))

Configuration file

sight:
name: All recommended
params:
orientation:
type: orientation
value: IN/OUT/UND/MUTUAL

29.5.6 All train

When this mechanism is used, each user sees all the information pieces not coming from recommended users, and
which have not previously propagated by the user.

• IN: it considers the incoming neighborhood of the target user.

• OUT: it considers the outgoing neighborhood of the target user.

• UND: it considers the all the possible neighbors of the target users (Γ𝑜𝑢𝑡(𝑢) ∪ Γ𝑖𝑛(𝑢))

• MUTUAL: it considers as neighbors those who share a reciprocal link with the target user (Γ𝑜𝑢𝑡(𝑢) ∩ Γ𝑖𝑛(𝑢))

Configuration file

sight:
name: All train
params:
orientation:
type: orientation
value: IN/OUT/UND/MUTUAL
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29.5.7 Count

Each user sees, at most, a pre-determined number of the received information pieces.

Parameters

• numSight: the maximum number of pieces each user sees.

Configuration file

sight:
name: Count
params:
nuSight:
type: int
value: number_of_pieces

29.5.8 Recommended

This mechanism defines two probabilities: a probability for seeing pieces coming from recommended links and a
probability for seeing pieces coming from the rest of the users.

Parameters

• probRec: the probability of observing coming from links created via a recommendation

• orientation: the neighborhood from which information pieces come. It is used to determine which of the
users come from a recommendation and which of them do not.

– IN: it considers the incoming neighborhood of the target user.

– OUT: it considers the outgoing neighborhood of the target user.

– UND: it considers the all the possible neighbors of the target users (Γ𝑜𝑢𝑡(𝑢) ∪ Γ𝑖𝑛(𝑢))

– MUTUAL: it considers as neighbors those who share a reciprocal link with the target user (Γ𝑜𝑢𝑡(𝑢)∩Γ𝑖𝑛(𝑢))

• probTrain: the probability of observing an information piece from the original links in the network.

Note: when used in code, there is another option, which takes as input a graph containing the probabilities. However,
this option is not (at the moment) available from a configuration file.

Configuration file

selection:
name: Recommended
params:
probRec:
type: double
value: probability

probTrain:
type: double

(continues on next page)
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value: probability
orientation:
type: orientation
value: IN/OUT/UND/MUTUAL

29.6 Update mechanisms

During the diffusion process, it is likely for a user to receive the same information several times. Each iteration,
the received information piece contains the following information: the identifiers of the users who have sent him the
information in the corresponding iteration and the timestamp of the interaction.

However, when the user has already received the information piece in previous iterations, it is necessary to combine
them into just one piece. This is the task of the update mechanism: select which information is actually used in the
diffusion process.

RELISON provides the following mechanisms:

• Merger

• Newest

• Oldest

29.6.1 Merger

In this case, all the information pieces are merged into one: the user can access all the people who sent him the
information piece during the diffusion process. The timestamp of the reception is the timestamp of the last iteration
he/she received the piece.

update:
name: Merger

29.6.2 Newest

In this case, the user only knows information about the newest received information piece (i.e. it can access the people
who have sent this information piece in the last iteration, and the timestamp of reception is the one of this last iteration).

Configuration file

update:
name: Newest
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29.6.3 Oldest

In this case, the user only knows information about the oldest received information piece (i.e. it can access the people
who have sent this information piece first, and the timestamp of reception is the one of the first time he/she received it).

Configuration file

update:
name: Oldest

In addition, it is necessary to provide, for each simulation, two additional elements: a set of filters to preprocess the
input data for the simulations, and a stop condition, which determines when the simulation ends. We list them below:

29.7 Stop conditions

The stop conditions determine when the simulation ends, according to the properties of the diffusion. We consider
different options for the RELISON framework:

• Max. timestamp

• No more new

• No more propagated

• No more timestamps

• No more timestamps nor propagated information

• Num. iter

• Total propagated

29.7.1 Max. timestamp

The simulation stops a) when a certain timestamp is reached or b) when no more timestamps are available.

Parameters

• max: the maximum timestamp.

Configuration file

stop:
Max. timestamp:
max:
type: long
value: maximum_timestamp
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29.7.2 No more new

The simulation stops when no more new information is propagated (i.e. people might still propagate information, but
the recipients already know that information).

Configuration file

stop:
No more new:

29.7.3 No more propagated

The simulation stops when no information has been propagated during the last iteration.

Configuration file

stop:
No more propagated:

29.7.4 No more timestamps

The simulation stops when no more timestamps are available.

Configuration file

stop:
No more timestamps:

29.7.5 No more timestamps nor propagated information

The simulation stops when no more timestamps are available or when users are not propagating information to others.

Configuration file

stop:
No more timestamps nor propagated:
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29.7.6 Num. Iter

The simulation stops when a fixed number of iterations have passed.

Parameters

• numIter: the number of simulation iterations to run.

Configuration file

stop:
Num. iter:
numIter:
type: int
value: max_iter

29.7.7 Total propagated

The simulation stops when a fixed amount of pieces have been propagated.

Parameters

• limit: the number of pieces which need to be propagated.

Configuration file

stop:
Num. iter:
limit:
type: long
value: num_pieces

29.8 Information filters

The information filters allow the preprocessing of the information used in the diffusion simulations. RELISON provides
the following ones:

• Basic

• Creator

• Empty feature

• Information feature

• Information feature selection

• Minimum information feature frequency

• Num. information pieces
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• Only repropagated pieces

• Relevant edges

29.8.1 Basic

This filter does not modify the data. It returns the same, original data.

Configuration file

Basic:

29.8.2 Creator

This filter only keeps information pieces with information about the user who created them.

Configuration file

Creator:

29.8.3 Empty feature

This filter adds an empty feature for each information piece without features.

Configuration file

Empty feature:

29.8.4 Information feature

This filter only leaves those information pieces containing a given feature.

Parameters

• feature: the name of the feature

Configuration file

Information feature:
feature:
type: string
value: feature_name
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29.8.5 Information feature selection

This filter only keeps some information feature values, and the information pieces containing those values.

Parameters

• feature: the name of the feature

• file: a file containing the feature values to keep (one each line)

Configuration file

Information feature selection:
feature:
type: string
value: feature_name

file:
type: string
value: file_route

29.8.6 Minimum information feature frequency

This filter only keeps the information features which appear, at least, in a fixed number of information pieces. It only
keeps information pieces containing those features.

Parameters

• feature: the name of the feature

• minValue: a file containing the feature values to keep (one each line)

Configuration file

Minimum information feature frequency:
feature:
type: string
value: feature_name

minValue:
type: int
value: value
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29.8.7 Num. information pieces

This filter only keeps a limited number of information pieces for each user. In case a user has more user-generated
contents, it selects the given amount randomly.

Parameters

• numPieces: the maximum number of information pieces to keep for each user.

Configuration file

Num. information pieces:
numPieces:
type: int
value: value

29.8.8 Only repropagated pieces

This filter keeps only those information pieces which have been propagated by users different than their creator in a
previous diffusion process.

Configuration file

Only repropagated:

29.8.9 Relevant edges

If recommendation links have been added to the original graph, we only keep those recommended edges which were
relevant.

Configuration file

Relevant edges:
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THIRTY

INFORMATION DIFFUSION METRICS SUMMARY

RELISON provides many tools which can be used to analyze the properties of the information diffusion properties. We
differentiate two types:

• Metrics: provide a single value for all the iteration. We summarize the available metrics below:

30.1 Creator metrics

This group of metrics measures properties of the information diffusion by considering the creators of
the contents which are propagated through the network. RELISON includes the following metrics:

– Creator entropy

– Creator Gini complement

– Creator recall

30.1.1 Creator entropy

The creator entropy measures the entropy of the distribution that counts the times that information
created by each user has been propagated. We differentiate two variants:

– Individual: we measure the number of times each user has received information from each
creator, and find the entropy of that distribution. The final result is the average over all the users
in the network.

– Global: for each creator, we count the number of times that one of his/her created contents has
reached a user in the network. Then, the entropy is computed over that distribution.

Parameters

– unique: true if we only count the first time an information piece has been received by a user,
false otherwise.
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Configuration file

For the individual version, the configuration file is the following:

Individual creator entropy:
unique:
type: boolean
value: true/false

whereas, for the global version, it is:

Global creator entropy:
unique:
type: boolean
value: true/false

30.1.2 Creator Gini complement

The creator Gini complement measures how balanced is the number of times that the information
created by each user has been propagated. We differentiate two variants:

– Individual: we measure the number of times each user has received information from each
creator, and find the Gini complement of that distribution. The final result is the average over all
the users in the network.

– Global: for each creator, we count the number of times that one of his/her created contents has
reached a user in the network. Then, the Gini complement is computed over that distribution.

Parameters

– unique: true if we only count the first time an information piece has been received by a user,
false otherwise.

Configuration file

For the individual version, the configuration file is the following:

Individual creator Gini complement:
unique:
type: boolean
value: true/false

whereas, for the global version, it is:

Global creator Gini complement:
unique:
type: boolean
value: true/false
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30.1.3 Creator recall

For each user in the network, this metric computes the proportion of users in the network who have
created an information piece which has been received by the user. This metric indicates the fraction
of people in the network that each user has discovered through user-generated contents. The value is
then averaged over all the user.

Configuration file

Creator recall:

30.2 Information pieces metrics

This group of metrics measures properties of the information diffusion by considering the user-
generated contents (information pieces) which are propagated through the network.

– Information count

– Information Gini complement

– Real propagated recall

– Speed

30.2.1 Information count

This metric measures the average number of information pieces which the users have received over
time.

Configuration file

Information count:

30.2.2 Information Gini complement

This metric measures the number of times each information piece has been received, and it finds how
balanced the distribution is, by computing the Gini complement.

Configuration file

Information Gini complement:
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30.2.3 Real propagated recall

This metric measures the proportion of information pieces which have shared by other users in a
previous diffusion process which have been received. We differentiate two variants:

– Individual: we measure the proportion of the information pieces propagated by each user in the
previous process which have already been received by the user.

– Global: we measure the global proportion of the information pieces propagated in the previous
process which have already been received by the corresponding users.

Parameters

– unique: true if we only count the first time an information piece has been received by a user,
false otherwise.

Configuration file

For the individual version, the configuration file is the following:

Individual real propagated recall:

whereas, for the global version, it is:

Global real propagated recall:

30.2.4 Creator Gini complement

The creator Gini complement measures how balanced is the number of times that the information
created by each user has been propagated. We differentiate two variants:

– Individual: we measure the number of times each user has received information from each
creator, and find the Gini complement of that distribution. The final result is the average over all
the users in the network.

– Global: for each creator, we count the number of times that one of his/her created contents has
reached a user in the network. Then, the Gini complement is computed over that distribution.

Parameters

– unique: true if we only count the first time an information piece has been received by a user,
false otherwise.
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Configuration file

For the individual version, the configuration file is the following:

Individual creator Gini:
unique:
type: boolean
value: true/false

whereas, for the global version, it is:

Global creator Gini:
unique:
type: boolean
value: true/false

30.2.5 Speed

The speed of a simulation measures the number of contents which have been propagated and seen
during the simulation (considering that each information piece is received only once by a user).

Configuration file

Speed:

30.3 Feature metrics summary

This group of metrics measures properties of the information diffusion in terms of the features of the
users and the information pieces.

– External feature Gini complement

– External feature rate

– External feature recall

– Feature entropy

– Feature Gini complement

– Feature KL divergence

– Feature recall
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30.3.1 External feature rate

This metric considers the proportion of the received features which are unknown to the users. We
differentiate two cases:

– Individual: we consider the proportion of the received features which are unknown to the each
user, and then, we average over the set of people in the network.

– Global: we globally count the number of received feature unknown to the users.

In order to determine which features are unknown to the users, we do the following: * Information
features: we consider that a feature is unknown to the user if it does not appear in any of the infor-
mation pieces created by the user. * User features: we consider that a feature is unknown to the user
if the user does not have that feature.

Parameters

Both metrics receive the same parameters:

– feature: the name of the features we are going to use.

– userFeature: true if the studied features are user features, false if they are information pieces
features.

– unique: true if we just count each time a user receives a piece once, false otherwise.

Configuration file

For the individual feature rate, we have the following configuration file:

Individual external feature rate:
feature:
type: string
value: feature_name

userFeature:
type: boolean
value: true/false

unique:
type: boolean
value: true/false

and, for the global version:

Global external feature rate:
feature:
type: string
value: feature_name

userFeature:
type: boolean
value: true/false

unique:
type: boolean
value: true/false
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30.3.2 External feature recall

For each user in the network, this metric computes the proportion of unknown features in the network
which have been received. Then, this values are averaged to obtain the metric.

In order to determine which features are unknown to the users, we do the following: * Information
features: we consider that a feature is unknown to the user if it does not appear in any of the infor-
mation pieces created by the user. * User features: we consider that a feature is unknown to the user
if the user does not have that feature.

Parameters

Both metrics receive the same parameters:

– feature: the name of the features we are going to use.

– userFeature: true if the studied features are user features, false if they are information pieces
features.

Configuration file

External feature recall:
feature:
type: string
value: feature_name

userFeature:
type: boolean
value: true/false

30.3.3 External feature Gini complement

The external feature Gini complement measures how balanced is the number of times that each feature
has been propagated. We also count the cases where the feature was unknown to the receiving user.
We differentiate two variants:

– Individual: we measure the number of times each user has received each feature, and find the
Gini complement of that distribution. The final result is the average over all the users in the
network.

– Global: for each feature, we count the number of times that it has reached a user in the network.
Then, the Gini complement is computed over that distribution.

In order to determine which features are unknown to the users, we do the following: * Information
features: we consider that a feature is unknown to the user if it does not appear in any of the infor-
mation pieces created by the user. * User features: we consider that a feature is unknown to the user
if the user does not have that feature.
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Parameters

Both metrics receive the same parameters:

– feature: the name of the features we are going to use.

– userFeature: true if the studied features are user features, false if they are information pieces
features.

– unique: true if we just count each time a user receives a piece once, false otherwise.

Configuration file

For the individual version, the configuration file is the following:

Individual external feature Gini complement:
feature:
type: string
value: feature_name

userFeature:
type: boolean
value: true/false

unique:
type: boolean
value: true/false

whereas, for the global version, it is:

Global external feature Gini complement:

feature:
type: string value: feature_name

userFeature:
type: boolean value: true/false

unique:
type: boolean value: true/false

30.3.4 Feature entropy

The feature entropy measures the entropy of the distribution that counts the times that each feature
has been propagated. We differentiate two variants:

– Individual: we measure the number of times each user has received each feature, and find the
entropy of that distribution. The final result is the average over all the users in the network.

– Global: for each creator, we count the number of times that each feature has reached a user in
the network. Then, the entropy is computed over that distribution.
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Parameters

Both metrics receive the same parameters:

– feature: the name of the features we are going to use.

– userFeature: true if the studied features are user features, false if they are information pieces
features.

– unique: true if we just count each time a user receives a piece once, false otherwise.

Configuration file

For the individual version, the configuration file is the following:

Individual feature entropy:
feature:
type: string
value: feature_name

userFeature:
type: boolean
value: true/false

unique:
type: boolean
value: true/false

whereas, for the global version, it is:

Global feature entropy:
feature:
type: string
value: feature_name

userFeature:
type: boolean
value: true/false

unique:
type: boolean
value: true/false

30.3.5 Feature Gini complement

The feature Gini complement measures how balanced is the number of times that each feature has
been propagated. We differentiate two variants:

– Individual: we measure the number of times each user has received each feature, and find the
Gini complement of that distribution (independently for each user). The final result is the average
over all the users in the network.

– Global: for each feature, we count the number of times that it has reached a user in the network.
Then, the Gini complement is computed over that distribution.
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Parameters

Both metrics receive the same parameters:

– feature: the name of the features we are going to use.

– userFeature: true if the studied features are user features, false if they are information pieces
features.

– unique: true if we just count each time a user receives a piece once, false otherwise.

Configuration file

For the individual version, the configuration file is the following:

Individual feature Gini complement:
feature:
type: string
value: feature_name

userFeature:
type: boolean
value: true/false

unique:
type: boolean
value: true/false

whereas, for the global version, it is:

Global feature Gini complement:
feature:
type: string
value: feature_name

userFeature:
type: boolean
value: true/false

unique:
type: boolean
value: true/false

30.3.6 Feature KL divergence

This metric uses the Kullback-Leibler divergence to compare a) the distribution of times each feature
has been propagated during the simulation (the P distribution) and b) an approximation of the actual
distribution of the features, estimated by counting the number of pieces created by each user and
containing the corresponding features (the Q distribution):

𝐾𝐿𝐷 = −
∑︁
𝑓∈𝐹

𝑃 (𝑓) log

(︂
𝑃 (𝑓)

𝑄(𝑓)

)︂
We provide two different options:

– Individual: we measure the KL-divergence for each user separately, and then we average.

– Global: we measure the distributions for the whole network.

The metric measures the information gain achieved by the estimated distribution.
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Parameters

Both metrics receive the same parameters:

– feature: the name of the features we are going to use.

– userFeature: true if the studied features are user features, false if they are information pieces
features.

– unique: true if we just count each time a user receives a piece once, false otherwise.

Configuration file

For the individual version, the configuration file is the following:

Individual feature KLD:
feature:
type: string
value: feature_name

userFeature:
type: boolean
value: true/false

unique:
type: boolean
value: true/false

whereas, for the global version, it is:

Global feature KLD:
feature:
type: string
value: feature_name

userFeature:
type: boolean
value: true/false

unique:
type: boolean
value: true/false

30.3.7 Feature recall

For each user in the network, this metric computes the proportion of features in the network which
have been received. Then, this values are averaged to obtain the metric.
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Parameters

Both metrics receive the same parameters:

– feature: the name of the features we are going to use.

– userFeature: true if the studied features are user features, false if they are information pieces
features.

Configuration file

Feature recall:
feature:
type: string
value: feature_name

userFeature:
type: boolean
value: true/false

30.3.8 Feature user entropy

For each possible value of a feature, this metric counts the number of users who have received it, and
computes the entropy of the distribution.

Parameters

Both metrics receive the same parameters:

– feature: the name of the features we are going to use.

– userFeature: true if the studied features are user features, false if they are information pieces
features.

Configuration file

Feature user entropy:
feature:
type: string
value: feature_name

userFeature:
type: boolean
value: true/false
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30.3.9 Feature user Gini complement

For each possible value of a feature, this metric counts the number of users who have received it, and
computes the Gini complement of the distribution, to determine how balanced the distribution is.

Parameters

Both metrics receive the same parameters:

– feature: the name of the features we are going to use.

– userFeature: true if the studied features are user features, false if they are information pieces
features.

Configuration file

Feature user Gini complement:
feature:
type: string
value: feature_name

userFeature:
type: boolean
value: true/false

30.3.10 User-feature count

This metric measures the number of different (user,feature) pairs which are observed during the dif-
fusion. The (user, feature) pair is only observed if the user receives a content with the corresponding
feature.

Parameters

Both metrics receive the same parameters:

– feature: the name of the features we are going to use.

– userFeature: true if the studied features are user features, false if they are information pieces
features.

Configuration file

User-feature count:
feature:
type: string
value: feature_name

userFeature:
type: boolean
value: true/false
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30.3.11 User-feature Gini complement

This metric measures the number of times that different (user,feature) pairs which are observed dur-
ing the diffusion. The (user, feature) pair is only observed if the user receives a content with the
corresponding feature. Then, this metric determines how balanced the distribution over those pairs
is.

Parameters

Both metrics receive the same parameters:

– feature: the name of the features we are going to use.

– userFeature: true if the studied features are user features, false if they are information pieces
features.

– unique: true if we just count each time a user receives a piece once, false otherwise.

Configuration file

User-feature Gini complement:
feature:
type: string
value: feature_name

userFeature:
type: boolean
value: true/false

unique:
type: boolean
value: true/false

• Distribution: analyze individual properties of the different elements in the diffusion (users, contents,
user/content features). An individual value for each of these elements is provided each iteration.

30.4 Distributions

For a group of elements, distribution measure their individual properties in a given moment of the
simulation. This framework includes the following distributions:

– Features

– Information
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30.4.1 Features

This distributions measure properties of the different features. We differentiate three distributions
here:

– Information feature: this distribution measures the amount of times that information pieces
containing this feature have been received by the users in the simulation (or, in different words,
how many times each feature has been received).

– User feature: this distribution measures times pieces created by people with these features have
been received.

– Mixed feature: this distribution considers how many times information pieces containing a cer-
tain information feature and created by a user with a certain user feature have been received.

Parameters

In the case of the individual feature cases (both the information and the user cases), the configuration
receives just one parameter:

– feature: the name of the user/information feature to use.

In the case of the mixed feature case, we take two:

– userFeature: the name of the user feature we are going to use.

– infoFeature: the name of the information pieces feature we are going to use.

Configuration file

For the information feature distribution, we have the following configuration file:

Information features:
feature:
type: string
value: feature_name

for the user feature distribution, it is:

User features:
feature:
type: string
value: feature_name

and, for the mixed case:

Mixed features:
userFeature:
type: string
value: feature_name

infoFeature:
type: string
value: feature_name
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30.4.2 Information

For each information piece, this distribution measures how many times it has been received.

Configuration file

Information:

30.4.3 Users

For each user in the network, this distribution measures how many information pieces they have re-
ceived.

Configuration file

For the individual version, the configuration file is the following:

Users:
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THIRTYONE

GRAPH GENERATION

RELISON provides algorithms for generating graphs. In this section, we provide some guide on how to do this.

The graph generators are included in the core module of the framework, which can be imported into any Java library
using Maven as follows:

<dependency>
<groupId>es.uam.eps.ir</groupId>
<artifactId>RELISON-core</artifactId>
<version>1.0.0</version>

</dependency>
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THIRTYTWO

GRAPH GENERATION ALGORITHMS

The RELISON framework contains the following graph generators:

• Complete

• Empty

• No links

• Random

• Preferential attachment

• Watts-Strogatz

All the graph generators are configured in the following way:

GraphGenerator<U> gen = new GraphGenerator<>() // Substitute here the corresponding␣
→˓generator
gen.configure(arg1,arg2,...,argN)

Then, the graphs are generated with:

Graph<U> graph = gen.generate()

32.1 Complete

The complete graph generator creates a network where every pair of nodes is connected. It is defined in the
CompleteGraphGenerator class.

32.1.1 Arguments

The arguments for configuring a complete graph are:

• directed: if the graph to generate is directed.

• numNodes: the number of nodes in the network.

• selfloops: true if we also add links between a node and itself.

• generator: a node generator.
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32.2 Empty

The empty graph generator creates a network without links. It is defined in the EmptyGraphGenerator class (and the
EmptyMultiGraphGenerator for multigraphs).

32.2.1 Arguments

The arguments for configuring an empty graph are:

• directed: if the graph to generate is directed.

• weighted: the number of nodes in the network.

32.3 No links

The empty graph generator creates a network without links. It is defined in the NoLinkGraphGenerator class.

32.3.1 Arguments

The arguments for configuring a graph without links are:

• directed: if the graph to generate is directed.

• numNodes: the number of nodes in the network.

• generator: a node generator.

32.4 Preferential attachment

This generator starts with a fully connected set of nodes. Then, iteratively, a new node appears in the network, and
creates a fixed amount of links to the nodes already in the network. The link destinations are selected with a probability
proportional to their in-degree.

Reference: A-L. Barabási, R. Albert. Emergence of Scaling in Random Networks. Science 286(5439), pp. 509-512
(1999)

32.4.1 Arguments

The arguments for configuring a preferential attachment network are:

• directed: true if the graph we want to generate is directed, false otherwise.

• initialNodes: the number of initial nodes.

• numIter: the number of iterations, i.e. the number of additional nodes to add.

• numEdges: the number of edges to add each iteration.

• generator: a node generator.
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32.5 Random

This generator creates a network where the nodes are connected with a certain probability.

Reference: P. Erdös, A. Rényi. On Random Graphs. I, Publicationes Mathematicae Debrecen 6(1), pp. 290-297
(1959)

32.5.1 Arguments

The arguments for configuring a random Erdös-Renyi network are:

• directed: true if the graph we want to generate is directed, false otherwise.

• numNodes: the number of nodes in the network.

• prob: the probability that two nodes are joined with a link.

• generator: a node generator.

32.6 Watts-Strogatz

This generator first creates a ringed network, where each user is connected to other n nodes. Then, with certain proba-
bility, each link is randomly reconnected to other node.

Reference: D.J. Watts, S.H. Strogatz. Collective dynamics of ‘small-world’ networks. Nature 393(6684), pp. 440-442
(1998)

32.6.1 Arguments

The arguments for configuring a random Erdös-Renyi network are:

• directed: true if the graph we want to generate is directed, false otherwise.

• numNodes: the number of nodes in the network.

• meanDegree: the average degree of each node in the initial network (only int values).

• beta: the probability of rewiring an edge.

• generator: a node generator.
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